
Abstract:
Introduction: Severe tinnitus can seriously impair patients in their activities in daily life and reduce their quality of life. The aims of this prospective clinical study were to assess the long-term effects of cochlear implantation (CI) on tinnitus in patients with single-sided deafness and ipsilateral incapacitating tinnitus, and to investigate whether CI could treat various types of tinnitus. Materials and methods: Twenty-six subjects with unilateral severe-to-profound sensorineural hearing loss received a CI. Patients suffered from severe tinnitus greater than 6/10 on a visual analogue scale (VAS) due to unilateral deafness. Assessment consisted of a tinnitus analysis including determination of tinnitus type, frequency, and loudness. A tinnitus questionnaire (TQ) measured tinnitus distress. VAS and TQ were administered pre-implantation and post-implantation. Results: All 26 patients reported a subjective benefit from CI. Tinnitus loudness reduced significantly after CI from 8.6 to 2.2 on the VAS (scale: 0–10). The TQ total score decreased significantly and the mean tinnitus degree decreased from severe to mild. No differences were observed between patients with pure-tone tinnitus, narrow band noise tinnitus, or polyphonic tinnitus. The degree of tinnitus loudness reduction remained stable after CI. Conclusions: CI can successfully be used as treatment of severe tinnitus in patients with single-sided deafness and is equally effective for pure tone, narrow band noise, and polyphonic tinnitus. Long-term results show that implantation provides durable tinnitus relief in these patients. These results support the hypothesis that physiopathological mechanisms after peripheral deafferentation are reversible when hearing is restored. Single-sided deafness accompanied by severe tinnitus is a new indication for CI.

Abstract:
OBJECTIVE: In recent years, new speech coding strategies have been developed with the aim of improving the transmission of temporal fine structure to cochlear implant recipients. This study reports on the implementation of one such strategy (fine structure processing, FSP) in children. METHODS: This was a prospective study investigating the upgrade to a new speech processor. The upgrade used a repeated measures design with an alternating order of conditions (A-B-A-B design). Twelve pre- and perilingually deaf children with MED-EL C40+ cochlear implants were enrolled in the study. Patients were upgraded from their Tempo+ speech processor, which used continuous interleaved sampling (CIS) in combination with a frequency spectrum of 200-8500 Hz, to an Opus speech processor, which used FSP with an extended frequency spectrum of 70-8500 Hz. The primary means of testing was an HSM (Hochmair, Schulz and Moser) sentence test at 65 and 80 dB in quiet. In addition, the "Mainzer Kindersprachtest" (Mainz audiometric speech test for children) was applied at 65 and 70 dB. RESULTS: When the new FSP speech processor was used together with the extended low frequency range, HSM sentence tests at 65 and 80 dB resulted in scores indicating statistically significant improvements of 7.1 and 9.9 percentage points, respectively. Scores in the "Mainzer Kindersprachtest" at 65 and 70 dB indicated statistically significant improvements of 9.3 and 6.1 percentage points, respectively. CONCLUSIONS: The present study clearly shows that children benefit from the fine structure speech coding strategy in combination with an extended frequency spectrum in the low frequencies, as is offered by the Opus speech processors. This should be taken into consideration when fitting pre- and perilingually deaf children implanted almost a decade previously.

Abstract:
CONCLUSIONS: With full insertion with a long electrode, hearing preservation can be achieved even in the presence of a long electrode covering the residual hearing region. OBJECTIVES: Advances in developing new atraumatic concepts of electrode design as well as surgical technique have enabled hearing preservation after
cochlear implantation surgery, and EAS (electric acoustic stimulation) accompanied with hearing preservation is a new trend for patients with residual hearing at the lower frequencies. However, full insertion with a long/medium electrode and hearing preservation is still a challenging field that calls for discussion. METHOD: In this study, round window insertion, an atraumatic electrode, and dexamethasone administration were used and atraumaticity (hearing preservation and conservation of vestibular function) was evaluated with full insertion of the electrode. RESULTS: Postoperative evaluation after full insertion of the electrodes showed that hearing at low frequencies was well preserved in all five cases. Combined postoperative imaging with the referential tonotopic map confirmed achievement of full insertion and indicated the corresponding frequencies and the depth of the electrode. Achievement of atraumaticity of round window insertion in the present cases was confirmed from the viewpoint of the minimal drilling time as well as the preserved vestibular function.

Abstract:
Conclusions: Data from 50 patients suggest that the SONATATI100 cochlear implant (CI) is a safe and effective device. Objective: MED-EL has developed and tested a CI with titanium housing (the SONATATI100), which has the same internal components as the PULSARC1(100). Implant surgery should be less traumatic, as with these CIs smaller incisions and less drilling are involved. The study aimed to assess surgical issues pertaining to the implantation of the device, patient compatibility with the titanium of the implant housing, and other patient-related issues. Methods: Fifty patients were recruited into this multicenter study. In phase 1, 30 adults and in phase 2, 20 children received a SONATATI100 cochlear implant. An intraoperative survey was completed by the surgeons for all patients. A postoperative survey was completed by the audiologists/fitting engineers at first fitting and 3 and 6 months after the first fitting to evaluate the safety and the efficacy of the device. Results: The device was proven to be effective in that it was stable in the implant bed and that minimally invasive surgery could be carried out. The device was proven to be safe after medium-term use and no unexpected adverse events were reported.

Abstract:
Conclusion: This study demonstrates that electric acoustic stimulation (EAS) using the FLEX(EAS) electrode is a successful treatment method for preservation and stability of low frequency hearing, and results in significant improvements in speech perception. Objectives: Low frequency hearing preservation and stability following EAS surgery with the MED-EL PULSARC1(100) implant using the FLEX(EAS) electrode and a combined processor in a multicentre setting, and the efficacy and benefits of EAS over time were evaluated. Methods: Eighteen subjects with normal to moderate hearing loss in the low frequencies and severe to profound hearing loss in the high frequencies were implanted with the FLEX(EAS) electrode. Implantation was performed by different surgeons at three participating centres using either the cochleostomy or the round window approach. Preoperatively, hearing was measured; a battery of speech perception tests and the subjective benefit questionnaire were administered. These tests were subsequently repeated: first at EAS fitting, which was due 3 months after surgery, and then again 3, 6 and 12 months after EAS fitting. Results: Hearing could be preserved in all subjects. Speech understanding showed significant improvement in all tests over time with the EAS condition outperforming the cochlear implant-only condition at all intervals. These considerable effects were also reflected in the subjective benefit outcome.

Abstract:
OBJECTIVE: To examine the external validity of the United Kingdom English version of the LittLEARS® Auditory Questionnaire with English-speaking families of Canadian children with normal hearing. METHODS: The United Kingdom English version of the LittLEARS was administered to English-speaking families of 130 children with normal hearing in Ontario, Canada. Total scores for these children were compared to German-derived normative values. RESULTS: There was no significant difference between Canadian and German norms when using the

Abstract:
OBJECTIVE: To test localization of sound sources in horizontal and vertical dimensions in cochlear-implant (CI) listeners using clinical bilateral CI systems. DESIGN: Five bilateral CI subjects listened via their clinical speech processors to noises filtered with subject-specific, behind-the-ear microphones and head-related transfer functions. Subjects were immersed in a visual virtual environment presented via a head-mounted display. Subjects used a manual pointer to respond to the perceived sound location and received visual response feedback via the head-mounted display during the tests. The target positions were randomly distributed in two-dimensional space over an azimuth range of 0° to 360° and an elevation range of -30° to +80°. In experiment 1, the signal level was roved in the range of ±2.5 dB from trial to trial. In experiment 2, the signal level was roved in the range of ±5 dB. RESULTS: CI subjects were generally worse at sound localization than normal-hearing listeners tested in a previous study, both in the horizontal and vertical dimensions. In the horizontal plane, subjects could determine the correct side and locate the target within the side at better than chance performance. In the round plane, with a smaller level-roving range, subjects could determine the correct hemifield at better than chance performance but could not locate the target within the correct hemifield. The target angle and response angle were correlated as expected. The response angle and signal level range were also correlated, raising concerns that subjects were using only level cues for the task. With a larger level-roving range, the number of front-back confusions increased. The correlation between the target and response angles decreased, whereas the correlation between the level and response angle did not change, which is an indication that the subjects were relying heavily on level cues. CONCLUSIONS: For the horizontal plane, the results are in agreement with previous CI studies performed in the horizontal plane with a comparable range of targets. For the vertical plane, CI listeners could discriminate front from back at better than chance performance; however, there are strong indications that the broadband level, not the spectral profile, was used as the primary localization cue. This study indicates the necessity of new CI processing strategies that encode spectral localization cues.

Abstract:
CONCLUSION: Not stimulating the apical cochlear region in tonal language speaking cochlear implant users significantly reduces discrimination of Mandarin vowels. The data presented here suggest that electrode arrays that allow complete cochlear coverage with stimulation pulses seem to be preferable over shorter arrays for use in cochlear implant (CI) indications. OBJECTIVE: To assess the contribution of electrical stimulation beyond the first cochlear turn on tonal language speech perception. METHODS: Twelve Mandarin-speaking users of the MED-EL COMBI 40+ cochlear implant with complete insertion of the standard COMBI 40+ electrode array participated in the study. Acute speech tests were performed in seven electrode configurations with stimulation either distributed over the whole length of the cochlea or restricted to the apical, middle or basal regions. The test battery comprised tone, consonant, and vowel identification in quiet as well as a sentence recognition task in quiet and noise. RESULTS: While neither tone nor consonant identification depended crucially on the placement of the active electrodes, vowel identification and sentence recognition decreased significantly when the four apical electrodes were not stimulated.

Abstract:
Objective: The aim of this study was to develop comprehensive test material for Mandarin tone identification in noise for a male and a female talker. Additionally, the sensitivity index d' as a measure for the listeners' performance to identify individual tones was evaluated. Design: The study followed a prospective design. Study sample: The complete material comprises 72 loudness-balanced syllables in all 4 Mandarin tones.
For a selection of 20 syllables, i.e. 80 test words, performance-versus-intensity functions were measured in spectrally matched noise for 16 normal-hearing participants. Results: The average speech reception thresholds in noise were -12.9 dB for the male and -13.6 dB for the female talker recordings. The corresponding slopes were 8.6%/dB and 7.3%/dB. As a performance measure for individual tones, the proportion of correct responses to specific tones was substantially contaminated by response bias. The sensitivity index d', calculated according to detection theory, provided reasonable and unbiased performance versus intensity functions. Conclusions: The results firstly indicate that the material is homogenous enough for use as a speech test in clinical work and research. Secondly, to assess the discrimination performance for individual tones, d' values outperform the simple proportion of correct responses.

Abstract:
CONCLUSION: Telephone use among implanted children is significantly different from that of the normally hearing population of the same age. OBJECTIVE: To characterize the use of telephone in cochlear implanted children and compare it to that of age-matched normal-hearing children. METHODS: The study (n = 26) and control (n = 27) groups each consisted of children aged 5-17 years treated at a tertiary referral center. The study group included children who received a Med-El multichannel cochlear implant and had used it for at least 18 months. The control group comprised generally healthy children with normal hearing and no history of chronic ear disease or otologic surgery. The main outcome measures, evaluated through a questionnaire sent by mail, were comparison of telephone use and speech comprehension over the telephone between the study and control groups. RESULTS: The median age of the study and control groups was 9 and 7 years, respectively ($p = 0.12$). There was a significant difference between the two groups in the reported rate of telephone use (mean 128 and 244 min/week, respectively, $p = 0.006$) and speech comprehension of familiar persons and strangers, which was highly significant among teenagers. The reported sound quality was similar for the two groups.

Abstract:
OBJECTIVE: To test whether in-the-canal (ITC) microphones have an impact on spatial discrimination and speech perception by taking advantage of auricular cues. STUDY DESIGN: Experimental clinical study. SETTING: Audiologic laboratory in a tertiary referral center. PATIENTS: Seven bilateral adult cochlear implant (CI) users were selected from the institution's database. INTERVENTION: The adaptive German Oldenburg sentence test and minimum audible angle measurements were performed binaurally with experimental ITC and behind-the-ear (BTE) microphones. MAIN OUTCOME MEASURES: Spatial discrimination and speech perception scores assessed for each microphone position. RESULTS: Spatial discrimination on the side of the head was superior using ITC compared with BTE microphone positions; the differences on the side of the first CI were statistically significant (mean minimum audible angle ± standard deviation, 28.4 ± 7.61 degrees versus 34.1 ± 14.4 degrees; $p = 0.031$). Speech perception scores with ITC versus BTE microphone positions also were improved, although the differences were not statistically significant. CONCLUSION: ITC microphones could help to improve CI performance in the future.

Abstract:
Abstract Objective: The aim of the present study was to evaluate MED-EL's Fine Structure Processing (FSP) strategy in comparison with their variations of the standard Continuous Interleaved Sampling (CIS) strategy denoted CIS+ and High Definition CIS (HDCIS). Study Sample: Twenty experienced adult CI users participated in the study in connection with upgrading to a new speech processor and at a two-year follow-up. Design: Blinded paired-comparisons between FSP and HDCIS were performed for speech intelligibility and music sound quality. Standard speech recognition tests in quiet and in noise were also accomplished to monitor the participants' actual performance and to evaluate long-term outcomes. Results: Overall, the paired-comparison results showed no
significant differences between the strategies, however, the total numbers of significant individual preferences were: 11 FSP vs. 12 HDCIS for speech, and 4 FSP vs. 15 HDCIS for music. The average speech recognition score decreased significantly after one month with FSP, but after two years there were no significant difference compared to the initial results with CIS+. Conclusions: Owing to the large individual differences in subjective preference, and the fact that the FSP strategy was not superior to the CIS variations, the recipients should be given the opportunity of choosing between the strategies.

Abstract:

OBJECTIVE: This study had two aims: (1) to document the auditory and lexical development of children who are deaf and received the first cochlear implant (CI) by the age of 16 months and the second CI by the age of 31 months and (2) to compare these children's results with those of children with normal hearing (NH). **METHODS:** This longitudinal study included five children with NH and five with sensorineural deafness. All children of the second group were observed for 36 months after the first fitting of the device (cochlear implant). The auditory development of the CI group was documented every 3 months up to the age of two years in hearing age and chronological age and for the NH group in chronological age. The language development of each NH child was assessed at 12, 18, 24 and 36 months of chronological age. Children with CIs were examined at the same age intervals at chronological and hearing age. **RESULTS:** In both groups, children showed individual patterns of auditory and language development. The children with CIs developed differently in the amount of receptive and expressive vocabulary compared with the NH control group. Three children in the CI group needed almost 6 months to make gains in speech development that were consistent with what would be expected for their chronological age. Overall, the receptive and expressive development in all children of the implanted group increased with their hearing age. **CONCLUSION:** These results indicate that early identification and early implantation is advisable to give children with sensorineural hearing loss a realistic chance to develop satisfactory expressive and receptive vocabulary and also to develop stable phonological, morphological and syntactical skills for school life. On the basis of these longitudinal data, we will be able to develop new diagnostic tools that enable clinicians to assess child's progress in hearing and speech development.

Abstract:

CONCLUSION: Candidates for hearing preservation cochlear implant (CI) surgery can be divided into: those who benefit from electrical complement (EC) to remaining hearing and don't require additional amplification, those using a combined electric-acoustic stimulation (EAS) and those with the least amount of residual hearing who benefit from electric-only stimulation (ES) provided via medium length electrode. **OBJECTIVES:** Patients with a borderline level of residual hearing may benefit from a hybrid electric stimulation and acoustic amplification (EAS) after a cochlear implantation procedure aimed at hearing preservation. However, there is another group of individuals who possess substantial low-frequency residual hearing that is still functional. These partially deaf patients present a 'cliff-like' audiogram and have difficulty in comfortable listening, especially in noisy conditions and are deprived of the full enjoyment of music. **METHODS:** Eleven adults and seven children were implanted via round window with insertion depth intentionally limited to 18-22 mm. None of them could benefit from hearing aids before surgery and they were considered for EC to their residual hearing. **RESULTS:** Pure tone audiograms and discrimination scores show benefit from either EC to conserved natural acoustic hearing or EAS. One patient with a loss of functional residual hearing benefited from electrical stimulation (ES) and a standard CI coding strategy.

15. **Proceedings of the 9th European symposium on paediatric cochlear implantation, Warsaw, Poland 2009 (2010), Cochl Imp Int, 11 (suppl 1).**

Wilson BS. Partial deafness cochlear implantation (PDCI) and electric-acoustic stimulation, pp 56-66.

Lorens A, Zgoda M, Skarzynski H. Speech perception and subjective benefit in paediatric C40+ users after the upgrade to fine structure processing (FSP), pp 444-8.

Abstract:
To optimize outcomes of early implantation accurate speech processor programmes need to be provided quickly. This usually necessitates use of objective measures. One objective method is to use electrically elicited stapedius reflex thresholds (ESRTs) to set maximum comfort level (MCL). This paper aims to outline the procedure for generating programmes from ESRT measures and demonstrate the feasibility of this fitting method through outlining a number of studies evaluating incidence and stability of ESRTs and children's acceptance of, and performance with, ESRT generated programmes. The straightforwardness of this procedure, high incidence and stability of ESRTs, ready acceptance of and satisfactory performance with ESRT generated speech processor programmes indicate this fitting technique can be used extensively with children.

Abstract:
CONCLUSION: Acute comparisons between continuous interleaved sampling (CIS) and a temporal fine structure (TFS) coding strategy in Cantonese-speaking cochlear implant (CI) users did not reveal any significant differences in speech perception. Performance with the unfamiliar TFS coding strategy was on a par with CIS. Benefits of
extended fine structure use observed in other studies should be investigated for tonal languages. OBJECTIVES: CIS-based stimulation strategies lack an explicit representation of fine structure, which is crucial for tonal language speech perception. The aim of this study was to assess speech recognition with a TFS coding strategy in Cantonese-speaking CI users with no prior fine structure experience. METHODS: The fine structure coding strategy encodes TFS on a few apical channels, while the remaining more basal channels carry CIS stimuli. Twelve MED-EL implantees and long-term CIS users participated in a study comparing recognition for Cantonese lexical tones and CHINT sentences between CIS and fine structure stimulation. RESULTS: Mean tone identification scores in 12 subjects were 59.2% with CIS and 59.2% with fine structure stimulation using 4 TFS channels, mean scores of CHINT sentences in 8 subjects were 54.2% with CIS and 55.9% with TFS stimulation. Differences between the two strategies were not significant for any speech test. Two additional versions of TFS strategy and pulse rates were tested in six subjects. No significant differences between strategies were found.

Abstract:
Electric Acoustic Stimulation is the combination of acoustic stimulation (via a hearing aid) and electric stimulation via a cochlear implant) in the implanted ear. This paper summarises the preliminary speech perception scores and hearing preservation in adult patients (n=9) implanted with the Sonata FlexEAS electrode array. Subjects were adult candidates who met the national guidelines for cochlear implantation yet had some usable low frequency hearing. The surgical procedure aimed to preserve this residual hearing in the ear to be implanted. Patients retaining this usable hearing post operatively were issued with the DUET speech processor which provides a combination of acoustic and electric stimulation. Patients whose residual hearing was not preserved used the OPUS 2 processor in conjunction with the FlexEAS electrode array. The aim of the study was to investigate the speech perception scores of these two patient groups in comparison to patients using the standard Sonata Flex Soft electrode array. We aim to analyse whether patients whose residual hearing was not preserved perform as well as those for whom hearing preservation was not attempted. Results show that hearing preservation is possible in this patient group and the outcomes in terms of aided speech discrimination are potentially excellent. Therefore, it may be prudent to review the criteria for implant candidacy in this patient group in the future.

Abstract:
Depending on the etiology of sensory neural hearing loss and patient age, it is postulated that a significant number of cochlear implant candidates today have a rich neural substrate consisting of nondegenerated dendrites and a large number of spiral ganglion cells with associated axons. In addition, many patients have some residual hearing especially in the low frequencies, demonstrating neural survival in the apical regions. With long electrodes covering the scala tympani from base to apex, it has become feasible to improve tonotopic stimulation. Key to the long-term success of implantation is preservation of intracochlear structures during electrode insertion. Round window membrane insertion combined with free-fitting lateral wall electrode placement tends to preserve residual hearing. New coding strategies providing fine structure information in the apex can enhance patient performance. Delicate intracochlear tissues must also be preserved during the multiple explantations and reimplantations that young patients face during their 80+ year life span, otherwise some benefits will be lost over time.

Article in German

Abstract:
The rehabilitation of completely or profoundly deaf patients with a cochlear implant shows different results in their ability to communicate. These differences are certainly based upon the different kind and degree of the disease or damage leading to the loss of hearing. But as CI-systems are also different, an attempt was made to find out the CI-system offering the best chance for an optimal communication ability. Anonymously answered questionnaires of 45 and 193 patients in 2 series were statistically analysed. In both the 95% intervals of confidence for numbers of patients with 2 different CIs who could mainly communicate without additional optical or electronic help did not overlap. For Nucleus 62% and for MED-EL 83% of patients obtained a mainly free communication ability. The difference was statistically significant.

Abstract:
BACKGROUND: Recently, a new speech coding strategy named ‘fine structure processing’ (FSP) has been launched. METHODS: 32 subjects, all users of the MED-EL PULSARCI(100) system, have been switched over from a TEMPO+ to an OPUS 2 speech processor. In 22 subjects, the FSP strategy could be implemented (FSP group), in 10 patients not (high-definition continuous interleaved sampling, HDCIS, group). Subjects were tested with the Tempo+ (CIS+) just before switch-over and after 12 months of OPUS 2 (FSP/HDCIS) use. Performance with FSP/HDCIS was tested at switch-over, and after 1, 3, 6 and 12 months. A sentence-in-noise test and a Speech Spatial and Qualities of Hearing Scale (SSQ) questionnaire were assessed at each test interval.
RESULTS: In the FSP group, the speech reception threshold shows a deterioration of 3.3 dB (n.s.) at the acute switch-over interval, but a significant improvement over time (p < 0.001) with a final benefit of 6.5 dB after 12 months of FSP use. A significant improvement over time can also be seen on the spatial subscore of the SSQ questionnaire (p = 0.009). No significant differences could be seen in the HDCIS group.
CONCLUSION: The results show that by enhancing fine structure coding in the lower frequencies, as implemented in the FSP coding strategy, speech perception in noise can be enhanced.

Abstract:
The Manchester Cochlear Implant Programme was established in 1988 and over 1000 patients have been implanted to date. Developments and improvements in cochlear implant technology over the past 21 years have resulted in new generations of implants and speech processors becoming available for use with patients. Since 2004, our patients have been asked to choose a device, based on their own preferences. This study looks at the speech discrimination scores of adults fitted with the latest generation of speech processors, including the Freedom (n=40), the Harmony (n=3) and the Opus 2 (n=7). These scores are also compared to those of patients using earlier generations of speech processors, including the Esprit 3G (n=89), the Auria (n=9) and the Tempo+ (n=38). Speech discrimination assessments (CUNY sentences, BKB sentences (in quiet and in noise) and AB words) were undertaken at the following intervals: 1 week, 3 months, 9 months and 21 months post switch-on. Patients were grouped according to their speech processor type and speech discrimination scores compared across the 6 groups. Our findings show that patients using the newer generation of speech processors tend to have higher speech discrimination scores than those using older generations of processor.

Abstract:
AIMS: This paper uses a new method of speech testing where the hearing aid or cochlear implant (CI) users are tested in a more realistic listening situation. METHODS: Groups of 11 subjects matched for performance with 5 different CI systems, for a total of 55 subjects, were tested with an adaptive test regime where the presentation level of the speech signal roved by ±10 or ±15 dB. RESULTS: Speech reception thresholds varied widely between -4.8 and 17.3 dB with the ±15 dB roving condition being more difficult than the ±10 dB roving condition. We also found significant differences in speech reception threshold between groups using different devices. CONCLUSION: The test method used in our study, which attempts to test CI users in a more realistic listening situation, is sensitive to the effects of various subject-specific and technical parameters on everyday speech perception with CIs.

Abstract:
OBJECTIVES: Presently, there are only few studies examining the benefits of fine structure information in coding strategies. Against this background, this study aims to assess the objective and subjective performance of children experienced with the C40+ cochlear implant using the CIS+ coding strategy who were upgraded to the OPUS 2 processor using FSP and HDCIS.
METHODS: In this prospective study, 60 children with more than 3.5 years of experience with the C40+ cochlear implant were upgraded to the OPUS 2 processor and fit and tested with HDCIS (Interval I). After 3 months of experience with HDCIS, they were fit with the FSP coding strategy (Interval II) and tested with all strategies (FSP, HDCIS, CIS+). After an additional 3-4 months, they were assessed on all three strategies and asked to choose their take-home strategy (Interval III). The children were tested using the Adaptive Auditory Speech Test which measures speech reception threshold (SRT) in quiet and noise at each test interval. The children were also asked to rate on a Visual Analogue Scale their satisfaction and coding strategy preference when listening to speech and a pop song. However, since not all tests could be performed at one single visit, some children were not able to complete all tests at all intervals.

RESULTS: At the study endpoint, speech in quiet showed a significant difference in SRT of 1.0 dB between FSP and HDCIS, with FSP performing better. FSP proved a better strategy compared with CIS+, showing lower SRT results of 5.2 dB. Speech in noise tests showed FSP to be significantly better than CIS+ by 0.7 dB, and HDCIS to be significantly better than CIS+ by 0.8 dB. Both satisfaction and coding strategy preference ratings also revealed that FSP and HDCIS strategies were better than CIS+ strategy when listening to speech and music. FSP was better than HDCIS when listening to speech.

CONCLUSIONS: This study demonstrates that long-term pediatric users of the COMBI 40+ are able to upgrade to a newer processor and coding strategy without compromising their listening performance and even improving their performance with FSP after a short time of experience.

Abstract:

BACKGROUND: Partial deafness (PD) is a condition in which hearing loss occurs in at least 1 frequency critical to speech understanding. Current options for partial deafness treatment (PDT) rely on preoperative hearing preservation, which, along with the use of different means of acoustic and electric stimulation, enable extending the indications for various assistive hearing devices. Possible solutions include acoustic methods only, the use of hearing aids or middle ear implants, electric complementation, and a combination of electric and acoustic stimulation. MATERIAL/METHODS: A total of 95 patients (63 adults, 32 children) with different types of PD were treated using selected types of electrodes and the optimal "round window" approach to the inner ear, with at least 36 months of observation. RESULTS: The extension of PDT indications created an opportunity for patients with different hearing impairments who obtained no benefit from a hearing aid and did not qualify for standard cochlear implant application. The authors' observations are based on the findings that preservation of preoperative hearing had been achieved in 97.1% of adult patients (8 years' observation) and in 100% of children (6 years' observation). Those results send the important message that PDT is feasible and effective. CONCLUSIONS: To allow comparison of PDT results from different studies, the authors developed the Skarzynski PDT classification system, which permits the comparison of postoperative results, including the degree of hearing preservation and, more importantly, the patient's understanding of speech after treatment.

Abstract:

The present study evaluated the benefit possible from a cochlear implant (CI) using a simplified map (with a set of default parameters), rather than the conventional approach of producing a 'customized map' from electrode-specific psychophysical measures. Young children are sometimes initially provided with such maps and the aim was to gain an insight into what level of benefit they might provide. Maps with upper stimulation levels set equally across the array (i.e. 'flat' maps) were compared with normal 'customized' maps in established adult users of the MED-EL C40+ device. Speech discrimination was significantly poorer for the flat maps overall (mean of 72.7% for customized map, and 60.5% for flat map) and loudness balance estimates showed a range of degrees of imbalance. These results suggest that flat maps may provide paediatric CI users with useful levels of performance when psychophysical or objective measures cannot be obtained. The poorer performance with the flat map suggests that customized maps should be fit as soon as possible to provide paediatric patients with the maximum benefit of the CI device.

Abstract:
Mandarin Chinese is a tone language in which pitch variations are used to change the meanings of words. This study focused on the production of the four tones of Mandarin by adults and eight-year-old children with normal hearing, who spoke Mandarin as their first language. All speakers were recorded producing the tones in the syllable [ma]. Analysis of the speakers' productions of the four tones in [ma] showed that all of the children were able to produce the appropriate tonal contrasts. Some differences between the children and adult speakers were found in the duration of the tones. These data represent a benchmark against which the speech of children with implants can be compared.

Abstract:

BACKGROUND/AIMS: A patient with bilateral severe, sloping, high-frequency hearing loss was treated with sequential bilateral electric acoustic stimulation (EAS) using the MED-EL Duet EAS cochlear implant. On one side, a partial 18-mm insertion of the electrode array (M-type) in the cochlea was performed. The contralateral side was implanted 39 months later with a deep 30-mm insertion of the electrode array (FLEX(soft) type). The aims were to assess whether low-frequency hearing could be preserved after deep electrode insertion, as well as to assess the benefit of bilateral EAS surgery compared to monaural EAS. METHODS: Hearing thresholds and speech recognition outcomes were measured preoperatively and up to 48 months postoperatively. Outcomes from the partial and deep insertion side are compared. The benefit of EAS in daily life was assessed with the Abbreviated Profile of Hearing Aid Benefit questionnaire. Benefits of bilateral EAS were calculated from speech reception thresholds measured using the LINT speech-in-noise number test. Speech was always presented from the front. Noise was either presented from the front, from the left side, or from the right side. Each condition was measured for unilateral and bilateral EAS use. RESULTS: Partial as well as deep insertion of the electrode array resulted in hearing preservation and significant speech recognition in this particular case. Both EAS devices provided more than 80% speech recognition in noise at a 10-dB signal-to-noise ratio. Bilateral EAS was beneficial for speech reception in noise compared to monaural EAS. A head shadow effect of 3.4 dB, binaural squelch effect of 1.2 dB and binaural summation effect of 0.5 dB were measured. CONCLUSION: Hearing preservation is also possible after cochlear implantation using a FLEX(soft) electrode array with a near-full insertion (30 mm) into the cochlea. Bilateral EAS was successfully implemented in this patient providing better speech recognition compared to monaural EAS.

Abstract:

BACKGROUND/AIMS: The combined electric acoustic stimulation (EAS) of one ear is a topic that has received considerable attention over the last 10 years, the technique having originally been introduced by Prof. Christoph A. von Ilberg for so-called borderline adult cochlear implant (CI) candidates. Its development has followed several parallel strands, including the modification of existing surgical approaches and the use of different CI devices (including new designs of electrode), as well as having been applied to various different groups of patients. The aim of the study described herein was to investigate the application of EAS in children with partial deafness (PD).

METHODS: In 2002, we performed the first implantation of an adult patient with PD, in which we pioneered the technique of partial deafness cochlear implantation (PDCI). Encouraged by the outstanding results achieved by the application of EAS in adults, we have extended its application to children who have a significant amount of residual hearing in the ear selected for implantation. Between September 2004 and December 2007, 15 children with PD and 10 platinum hearing aid users were implanted with either a COMBI 40+ or a PULSAR, using the ‘round window’ technique to increase the probability of hearing preservation. RESULTS: Monosyllabic word recognition increased over a 12-month period in the platinum group, from 31 to 60% under quiet conditions and from 1 to 19% under noisy conditions. In the PDCI group, the commensurate increase was from 34 to 67% under quiet conditions and from 7 to 47% under noisy conditions. CONCLUSION: The application of EAS in children gives them the ability to understand speech, hence allowing the child's overall communication skills to be improved by increasing their efficiency and effectiveness.

BACKGROUND/AIMS: The aim of this study was to describe audiological outcomes and surgical considerations in electric acoustic stimulation for patients with severe to profound high-frequency hearing loss. METHODS: In this latest series of patients in our center, all patients were supplied with the new (atraumatic) Flex EAS MED-EL electrode. Eleven patients (age 7.62-71.32 years) with profound high-frequency hearing loss were implanted with this electrode, which was designed to preserve residual hearing despite the intracochlear insertion of an electrode array. All patients were operated on by the same surgeon (W.G.). RESULTS: The rate of complete or partial hearing preservation was 100% after a mean follow-up period of 7.85 months (range 0.95-15.65 months). CONCLUSION: This study proves that both refined surgical techniques and atraumatic electrodes are mandatory to preserve residual hearing after cochlear implantation. Flexible, thin, and free-fitting straight electrodes, such as the MED-EL Flex EAS electrode used in this study, seem to most accurately meet the requirements for hearing preservation in electric acoustic stimulation.

Abstract:
Research into electric acoustic stimulation (EAS) indicates that performance improves when acoustic stimulation is added to electric stimulation in subjects with residual low-frequency acoustic hearing. Research further indicates that information from the voice fundamental frequency (F0) region accounts for the majority of the added speech perception benefit with EAS. This implies that improved frequency coding in the low frequencies could hold great potential for improving performance with cochlear implants (CIs). Results with new speech coding strategies such as fine structure processing indeed indicate that with improved low-frequency coding, at least some of the benefits of EAS can be translated to regular CI users.

Abstract:
BACKGROUND/AIMS: Subjects with sufficient residual low-frequency hearing after cochlear implantation can benefit from electric acoustic stimulation (EAS). A combined speech processor (MED-EL DUET), which incorporates a hearing aid and a speech processor in one device, was designed especially for this group of patients. The present report evaluates the influence of postoperative pure tone audiometric results on personal acceptance of the DUET system in EAS users. METHOD: Fifteen subjects underwent cochlear implantation for EAS and hearing preservation was achieved at least partially. All were fitted with the DUET EAS hearing system. Personal acceptance (measured by whether or not they were using the DUET system) in combination with audiometric results were investigated over time. RESULTS: The combined processor was accepted by the majority of the subjects. However, those who had initial or further loss of residual hearing of more than 55 dB at 125 Hz or more than 70 dB at 250 Hz and 98 dB at 500 Hz rejected the DUET device. CONCLUSION: The combined processor enables subjects with sufficient hearing preservation in the low-frequency range up to 500 Hz to benefit from EAS. Acceptance is dependent on the pure tone audiometric outcomes after surgery and can vary with hearing loss progression.

Abstract:
AIMS: This study compared the music perception abilities of 13 electric acoustic stimulation (EAS) users with two control groups: unilateral cochlear implant (CI) users and normal-hearing (NH) listeners. METHODS: Groups were matched according to age and musical experience before hearing loss (HL) and tested using the Musical Sounds in Cochlear Implants (Mu.S.I.C.) test. RESULTS: No difference was found on rhythm perception, chord discrimination, dissonance rating, and emotion rating subtest performance between groups. Mean frequency discrimination scores were significantly better in EAS participants than in CI participants and not significantly worse than in NH participants. However, the EAS and CI groups scored similarly (significantly worse than NH participants) on both instrument detection and identification. Results for EAS participants were not significantly worse when the hearing aid component was removed. Frequency of listening to music before HL was negatively

Abstract:

BACKGROUND/AIMS: Reducing the risk of hearing loss after cochlear implantation requires optimization of the electrode array to minimize the physical trauma caused by insertion and placement. Furthermore, the electrode design must be optimized for atraumatic surgical approaches. Even greater levels of protection may be achieved by the use of a drug during and after implantation. The electrode array offers a potential vehicle for drug delivery. METHODS: This article reviews the laboratory and clinical data available thus far relating to the importance of electrode design parameters for trauma minimization, and the possibility of further reduction through pharmaceutical intervention. Candidate drugs were identified through literature review and laboratory evaluation. The most promising have been investigated in vitro and in animal models of implantation trauma. Three delivery devices are currently under development to satisfy the specific demands of different therapy regimes. The delivery profiles of each were evaluated through both modelling and bench testing and the concepts investigated in vitro and in vivo. RESULTS: Current evidence favours a thin, flexible electrode array with wires in a zigzag shape. Steroids and an apoptosis inhibitor (AM111) performed well in animal models of electrode trauma and are both good drug candidates for reduction of the risk of hearing loss after implantation. Semi-chronic dexamethasone elution, acute drug delivery by intracochlear catheter, and longer-term delivery through diffusion from a reservoir were all shown to be feasible. CONCLUSION: An extensive programme focussed on minimizing hearing loss through device optimization and the development of new technologies has yielded positive results and new concepts for further development and clinical application.

Abstract:

Background: One of the most significant recent advances in cochlear implantation is the implantation of patients with residual hearing. These patients have a downsloping sensorineural hearing loss with poor speech discrimination and perform poorly with standard amplification. Studies using a variety of different electrode designs have demonstrated that it is possible to implant an inner ear and preserve residual hearing. Initial studies have demonstrated that a combination of residual acoustic hearing in the low frequencies with electrical stimulation in the mid- to high frequencies resulted in superior hearing performance in background noise. Purpose: The objective of this study was to determine the effect of electrode insertion depth on hearing preservation. Study Sample: Eighteen patients with mild to severe hearing loss in the low frequencies combined with poor word recognition were recruited for the study. Intervention: Cochlear implantation. Data Collection and Analysis: Pre- and postoperative hearing test, Hearing in Noise Test, and consonant-nucleus-consonant testing. Data analysis was performed with Kruskal Wallis and Mann-Whitney testing. Results: In our study of 18 patients implanted with a Med-El PulsarCI100 we demonstrated the ability to preserve residual hearing with implant insertion depths ranging from 20 to 28 mm, giving us the possibility of near complete cochlear frequency coverage with an implant array while preserving residual hearing. These patients performed well both in quiet and in 10 dB signal-to-noise ratio conditions. Conclusion: Hearing preservation was achievable even with deep implant insertion. Patients performed well in combined acoustic and electric conditions.

Abstract:

For many years, the fields of inner ear pharmacology and hearing devices have progressed in parallel with limited interaction. Recently, there has been a considerable advancement in our understanding of the inner ear and its

Abstract:

BACKGROUND: According to the World Health Organization (WHO), by 2025 there will be approximately 1.2 billion people in the world over the age of 60, which marks a shift in world population to a greater proportion of older people. An estimated 70-80% of adults between 65 and 75 years of age suffer from presbycusis, or age-related, bilateral sensorineural hearing loss (HL) in the high frequencies. Presbycusis is correlated with decreased quality of life (QoL) and depression and according to WHO, is a leading cause of years lived with disability in the adult years. OBJECTIVE: The purpose of the current study was to review the body of literature on treatment options and considerations for the elderly population, as there is a variety of audio-technology available today to treat presbycusis. METHODS: A PubMed literature search was conducted using the keywords ‘presbycusis/presbyacusis/geriatric AND hearing aids/cochlear implants/electric acoustic stimulation/middle ear implants’ and ‘elderly AND cochlear implants’. References were also mined from papers found. RESULTS: 431 articles were considered in this review of treatment options for elderly patients suffering from presbycusis. CONCLUSION: Hearing aids and cochlear implants (CIs) are the most commonly used devices for treating mild-severe presbycusis. Reported outcomes with hearing aids indicate they are an effective method for treating mild-moderate HL in cases where the patient is appropriately fitted and is willing, motivated, and able to use the device. Depending on the type and severity of the HL and the specific needs of the patient, electric-acoustic stimulation and active middle ear implants may also be appropriate solutions for treating presbycusis. Finally, very positive QoL and speech perception outcomes have been documented in treating severe-profound presbycusis with CIs. In some studies, QoL outcomes have even exceeded expectations of elderly patients.

Abstract:

A novel channel-picking strategy for cochlear implants (CIs) which considers the spatial distribution and the spectral relevance of the channels selected for stimulation is described. In the proposed strategy, the available channels are subdivided into groups, designated as "Selected Groups" (SG), and within each group, a specified number of active channels with the largest amplitudes are selected for stimulation. The hypothesis is that most of the spectral information that can be perceived by CI listeners is conveyed by taking the highest filter band outputs within a stimulation area represented by a group of neighboring channels. Two experiments were conducted in subjects with MED-EL implant systems, measuring recognition of sentences in speech-shaped noise. In experiment 1, the SG group size was varied from two to four while selecting one active channel per group and keeping the pulse phase durations constant. Results showed no significant difference in sentence recognition between continuous interleaved sampling and SG configurations up to a group size of three. In experiment 2, phase durations were doubled, using groups of two channels with one active channel each. This resulted in a reduction of pulse amplitudes by about 40%. Intelligibility of sentences in noise was unaffected, making a substantial reduction of implant supply voltages feasible. In all experiments, the stimulation frame rate was kept constant in order to avoid rate-change effects.

Abstract:

Biphasic electrical pulses are the standard stimulation pulses in current cochlear implants. In auditory brainstem recordings biphasic pulses generate a significant artifact that disrupts brainstem responses, which are magnitudes smaller. Triphasic pulses may minimize artifacts by restoring the neural membrane to its resting potential faster than biphasic pulses and make auditory brainstem responses detection easier. We compared biphasic pulses with
triphasic and precision triphasic pulses to evoke brainstem responses in human subjects. For this purpose, electrically evoked brainstem response audiometry was performed in 10 (11 ears) cochlear implant patients. Artifacts and brainstem responses evoked by bi- and triphasic stimulation were analyzed. Artifact amplitude and decay time were related to pulse pattern shape, but application of averaging and alternation reduced the deterioration of electrically evoked brainstem responses independent of pulse pattern shape. Contrary to our expectations, biphasic pulses showed a higher detectability in comparison to triphasic pulse stimulation at the same stimulation amplitude.

Abstract:

OBJECTIVE: In this study, we analyze how electrically evoked compound action potential (ECAP) responses can be used to assess whether electrodes should be activated in the map and to estimate C levels in the Med-El Tempo+ Cochlear Implant Speech Processor. DESIGN: ECAP thresholds were measured using the ECAP Recording System of the Pulsar CI implant. Twenty-one postlingually and 28 prelingually deafened patients participated in this study. The relationship between ECAP responses and the activation of electrodes was analyzed. Because an error in the estimation of T levels (behavioral thresholds) has less effect on hearing quality than an error in the estimation of C levels in the Tempo+ cochlear implant speech processor (maximum comfort levels), correlation and regression analyses were performed between ECAP thresholds and C levels. RESULTS: The observation of an evoked potential generally implied that the electrode was activated because only 3.5% of electrodes that yielded measurable evoked responses were deactivated, because of collateral stimulations or an unpleasant hearing sensation. In contrast, the absence of an evoked potential did not imply that an electrode should be deactivated, because 20% of these electrodes provided a useful auditory sensation. ECAP responses did not predict the absolute behavioral comfort levels because of the excessive error between behavioral C levels and those derived from ECAP thresholds (the mean relative error is 43.78%). However, by applying a normalization procedure, ECAP measurements allowed the C-level profile to be predicted with a mean relative error of 6%; that is, they provided useful data to determine the C level of each electrode relative to the average C level of the patient. CONCLUSIONS: ECAP is a reliable and an useful objective measurement that can assist in the fitting of the Tempo+ cochlear implant speech processor. From results presented in this work, a protocol is proposed for fitting this cochlear implant system. This protocol facilitates appropriate cochlear implant fitting, particularly for children or uncooperative patients.

Abstract:

The main source of distortion in the recording of the electrically evoked compound action potentials is the stimulus artifact. The popular hardware blanking technique tends to reduce this artifact, but generates a blanking artifact as a consequence of the transient state in the amplifier. In this paper we propose two techniques to deal with the blanking artifact. The proposed techniques are combined with conventional and generalized alternating stimulation in order to reduce both stimulus and blanking artifacts in the recording of the evoked potentials. A comparison over 126 evoked potential recordings reveals that the proposed blanking artifact reduction methods improve the quality of electrically evoked compound action potential recordings.

Article in German.

Abstract:

None available.

compound action potentials using the MED-EL standard electrode array. Biomedical engineering online, 8:40.

Abstract:

BACKGROUND: The standard electrode array for the MED-EL MAESTRO cochlear implant system is 31 mm in length which allows an insertion angle of approximately 720 degrees. When fully inserted, this long electrode array is capable of stimulating the most apical region of the cochlea. No investigation has explored Electrically Evoked Compound Action Potential (ECAP) recordings in this region with a large number of subjects using a commercially available cochlear implant system. The aim of this study is to determine if certain properties of ECAP recordings vary, depending on the stimulation site in the cochlea. METHODS: Recordings of auditory nerve responses were conducted in 67 subjects to demonstrate the feasibility of ECAP recordings using the Auditory Nerve Response Telemetry (ART) feature of the MED-EL MAESTRO system software. These recordings were then analyzed based on the site of cochlear stimulation defined as basal, middle and apical to determine if the amplitude, threshold and slope of the amplitude growth function and the refractory time differs depending on the region of stimulation. RESULTS: Findings show significant differences in the ECAP recordings depending on the stimulation site. Comparing the apical with the basal region, on average higher amplitudes, lower thresholds and steeper slopes of the amplitude growth function have been observed. The refractory time shows an overall dependence on cochlear region; however post-hoc tests showed no significant effect between individual regions. CONCLUSIONS: Obtaining ECAP recordings is also possible in the most apical region of the cochlea. However, differences can be observed depending on the region of the cochlea stimulated. Specifically, significant higher ECAP amplitude, lower thresholds and steeper amplitude growth function slopes have been observed in the apical region. These differences could be explained by the location of the stimulating electrode with respect to the neural tissue in the cochlea, a higher density, or an increased neural survival rate of neural tissue in the apex.

TRIAL REGISTRATION: The Clinical Investigation has the Competent Authority registration number DE/CA126/AP4/3332/18/05.

Abstract:

The programming of a CI speech processor involves measurement of electrical threshold and ‘most comfortable loudness’ (MCL) levels on each electrode. However, when the derived ‘map’ is activated the resultant percept is often too loud or too soft. In this situation, adjustments of MCL settings are usually made in order to achieve a comfortable percept. The present study examined the range of volume control adjustments in 24 users of the MED-EL C40/40+ device. Volume control settings varied from 36% to 126% with a mean of 84.3% (SD = 20.4%). Additionally, the output compression function (‘maplaw’) was adjusted to test whether this alternative manipulation could result in a comfortable percept. It was found that this could be achieved satisfactorily, with maplaw values ranging from 10 to 2000. Clinical implications of these findings are discussed.

Abstract:

The aim of this study is to evaluate the usefulness of the LittlEARS® Diary and the Activities to Supplement the Diary as a basis for early guidance of parents of children with Cochlear Implants (CIs). Methods: Six children with CIs and their parents participated in weekly, diary based observational parent guidance sessions. The parents and therapists shared Diary information and kept records. Therapists observed themed activities of parents with their children. Questionnaires were used to collect feedback from parents and therapists. Results: Diary records documented child development, therapists reported development in parent-child interaction skills and both parents and therapists gave very positive feedback. Conclusions: Using the Diary and the Activities help in training professionals to give family centered guidance. Outcome measures show that children and parents benefited from the program. This suggests that these tools in combination with a naturalistic and observational approach in early intervention lead to positive and more standard outcomes for families.

Cochlear implantation following renal transplantation is uncommon, and presents unique challenges with the surgical management. A retrospective review in a tertiary academic medical centre identified two patients having undergone cochlear implantation with the Med-El Pulsar CI100 following renal transplantation. Preimplantation Hearing in Noise Test (HINT) scores were 0 in both patients and improved following uneventful unilateral implantations to 100% at 13 months in the first patients and 71% by 19 months in the second. This study adds to the growing evidence that in appropriately selected renal transplant patients successful cochlear implantation can be achieved with the Med-El Pulsar. Decision making should rely on surgical candidacy, as well as assessment of surgical risk in collaboration with the transplant service.

OBJECTIVES: With more children receiving cochlear implants during infancy, there is a need for validated assessments of pre-verbal and early verbal auditory skills. The LittlEARS Auditory Questionnaire is presented here as the first module of the LittEARS test battery. The LittEARS Auditory Questionnaire was developed and piloted to assess the auditory behaviour of normal hearing children and hearing impaired children who receive a cochlear implant or hearing aid prior to 24 months of age. This paper presents results from two studies: one validating the LittEARS Auditory Questionnaire on children with normal hearing who are German speaking and a second validating the norm curves found after adaptation and administration of the questionnaire to children with normal hearing in 15 different languages. METHODS: Scores from a group of 218 German and Austrian children with normal hearing between 5 days and 24 months of age were used to create a norm curve. The questionnaire was adapted from the German original into English and then 15 other languages to date. Regression curves were found based on parental responses from 3309 normal hearing infants and toddlers. Curves for each language were compared to the original German validation curve. RESULTS: The results of the first study were a norm curve which reflects the age-dependence of auditory behaviour, reliability and homogeneity as a measure of auditory behaviour, and calculations of expected and critical values as a function of age. Results of the second study show that the regression curves found for all the adapted languages are essentially equal to the German norm curve, as no statistically significant differences were found. CONCLUSIONS: The LittlEARS Auditory Questionnaire is a valid, language-independent tool for assessing the early auditory behaviour of infants and toddlers with normal hearing. The results of this study suggest that the LittlEARS Auditory Questionnaire could also be very useful for documenting children's progress with their current amplification, providing evidence of the need for implantation, or highlighting the need for follow-up in other developmental areas.

Conclusion: In contrast to the Tempo+ the new Opus speech processor stimulates with the new fine structure programming (FSP) speech coding strategy and offers an extended frequency spectrum. A significant improvement in speech perception for sentences at 10 dB SNR (signal to noise ratio) was observable. Objectives: The aim of this study was to investigate the long-term effects on speech perception in quiet and in noise with the Opus speech processor using FSP. Subjects and methods: Eight post-lingually deaf patients implanted with Pulsar cochlear implants and fitted with Tempo+ speech processors (both MED-EL) for a minimum of 1 year were tested at baseline with Tempo+ using continuous interleaved sampling (CIS), and at 1 year follow-up with the Opus speech processor using FSP. Monosyllables and sentence tests were performed in quiet, and sentence tests (HSM) in noise with 15, 10 and 5 dB SNR. Results: Mean speech perception scores showed a trend towards improvement for all tests. A statistically significant (p<0.05) improvement was only observed for the sentence test in noise at 10 dB SNR.

Abstract:

After cochlear implantation, individuals with sufficient residual hearing in the lower frequency region are able to successfully combine acoustic and electrical stimulation patterns to improve speech perception, especially in noise, and to improve music appraisal as well. These improvements occur through enhanced transmission of fine structure information by more accurate mapping of the fundamental frequency contour through acoustic hearing. In current cochlear implant systems, the transfer of frequency and melodic contour is very coarse, and the correct detection of pitch contour requires large frequency differences. It is assumed that the acoustically transferred part of the signal enables the cochlear implant recipient to better segregate between speech signals and interfering sounds. The detection and following of a speech signal emitted by a single talker in a multitalker babble situation is improved when fundamental frequencies as grouping cues are present. The preservation of hearing in the implanted ear must be considered a major surgical challenge. The development of very flexible and soft electrode carriers in combination with surgical approaches that minimally traumatize the inner ear enable hearing preservation in nearly all cases.

Abstract:

BACKGROUND/AIMS: Combined electric-acoustic stimulation (EAS) of the auditory system usually results in better speech understanding than electric stimulation only, assuming low-frequency hearing can be preserved. Treatment options and outcomes for 4 subjects experiencing compromised hearing after EAS surgery are discussed. METHODS: Each subject underwent revision surgery to replace the original 21-mm electrode arrays used in EAS surgery with cochlear implants (CIs) with 31-mm arrays. Our aims were: (1) to investigate whether deeper insertion is possible, and (2) to evaluate the influence of electrode insertion angle by comparing speech perception scores before and after revision surgery. RESULTS: Deeper insertion was feasible in all subjects. Speech understanding scores after reimplantation were comparable to those seen after the first intervention. CONCLUSION: A 360-degree insertion under EAS conditions provides sufficient speech understanding, even in cases of additional hearing loss. Reimplantation with a longer electrode array is feasible in former EAS patients.

Abstract:

Cochlear implantation is a routine procedure for patients with bilateral profound sensorineural hearing loss. Some reports demonstrated a suppression of tinnitus as a side-effect after implantation. We describe the case of a 55-year-old man suffering from severe right-sided tinnitus in consequence of sudden right-sided deafness. Multiple therapeutic efforts including intravenous steroids and tympanoscopy with grafting of the round window remained unsuccessful. One year after onset of symptoms right-sided cochlear implantation was performed, which resulted in a complete abolishment of tinnitus after activating the implant. Severe unilateral tinnitus after sudden deafness might represent a new indication for cochlear implantation.

Abstract:

OBJECTIVE: To describe and discuss the midterm complications and pitfalls reported in patients with otosclerosis who received a cochlear implant. STUDY DESIGN: Prospective cohort study. SETTING: Tertiary referral center. PATIENTS: Fifteen patients who received a cochlear implant for otosclerosis, followed up for a minimum of 6 years. Onset of hearing loss occurred at a mean age (+/-standard deviation [SD]) of 32.6 +/- 8.6 years. Mean duration (+/-SD) of hearing loss was 26.8 +/- 7.9 years, and mean age (+/-SD) at implant surgery was 58.7 +/- 9.5 years. INTERVENTIONS: Before cochlear implantation, hearing thresholds were tested, and temporal bone anatomy and otosclerotic lesions were documented by high-resolution computed tomography and magnetic resonance imaging. All patients were implanted with a Med-El Combi 40 + device and a Standard Electrode Array. MAIN OUTCOME MEASURES: The number of inserted electrodes was checked by x-ray. After cochlear
implantation, hearing skills were tested, fitting parameters were recorded, and complications were noted.

RESULTS: As the disease progressed, the number of electrodes decreased, and the electrical thresholds, maximum comfort levels, and electric charge increased; these changes were more evident in the middle electrodes. Although facial nerve stimulation rate was lower than previously reported (13.3%), it increased during follow-up. Two patients (13.3%) had untreatable tinnitus. Nevertheless, all speech discrimination parameters improved significantly in all patients. CONCLUSION: Despite the need for special fitting strategies and the appearance of complications, facial nerve stimulation, and tinnitus, improvements in speech discrimination tests support the use of cochlear implantation for patients with otosclerosis.

Abstract:

OBJECTIVE: Few studies exist which document the early speech development of German-speaking children or German-speaking children who are deaf and using cochlear implants. The current study aims to: (1) document the pre-canonical and canonical speech development of German-speaking children who are deaf and receive cochlear implants by the age of 16 months and (2) compare these children's results with those of children with normal hearing. DESIGN: This longitudinal study included 5 German-speaking children with normal hearing and 5 with sensorineural deafness. All children from the deaf group received hearing amplification before cochlear implantation, received their first implant by 16 months of age, and became bilateral implant users by 31 months of age. The pre-canonical and canonical vocalisations of each child were recorded on video- and audiotapes in a semi-standardised playing situation every 4 weeks over a span of 1 year. In the cochlear implant group, the recording started 4-5 days postoperatively (first implant); in the normal hearing group it began between the ages of 4 and 5 months. The video and audio recordings were analysed using EUDICO Linguistic Annotator version 2.4 (Nijmegen, The Netherlands) and International Phonetic Alphabet transcription. RESULTS: Both groups showed individual patterns of babbling acquisition, though the groups' patterns of acquisition were similar when analysed for consonant manner and place. Some children started with plosives and others, with nasals, but all acquired fricatives and laterals next. Onset of canonical babbling for children in the cochlear implant group began 0-4 months after first fitting of the first device, while children from the normal hearing group demonstrated an onset of canonical babbling between 4 and 9 months of age. CONCLUSION: Our results show that deaf children who receive cochlear implants at an early age are capable of reaching the canonical babbling milestone in a shorter time than children with normal hearing typically do and that their consonant phoneme acquisition follows a similar sequence to normal hearing peers'. These results are consistent with the literature indicating that early identification and intervention are important for allowing children with cochlear implants the opportunity to catch up to hearing peers.

Abstract:

OBJECTIVES/HYPOTHESIS: To assess the insertion forces and feasibility of insertion of a prototype electrode carrier coated with a flexible and biodegradable coating developed for lubrication and drug delivery. STUDY DESIGN: Experimental study. METHODS: Eight coated and eight uncoated electrode carriers were inserted into a scala tympani model by means of an insertion device, and forces produced during insertion were determined in near real time. The maximum insertion depths and insertion angle were determined. To test the handling and operability, five coated electrode carriers were implanted into human temporal bones. Additionally, the bones were processed undecalcified and the distribution of the coating material within the cochlea evaluated. RESULTS: Insertion forces were markedly reduced in the group of coated electrode carriers for insertion depths above 15 mm. The insertions were less fitful and led to a higher maximum insertion angle. The insertion of the coated electrode carrier was feasible, and the coating material was evident up to the apical parts of the cochlea postimplantation. CONCLUSIONS: Coating of a cochlear implant electrode carrier may reduce insertion forces responsible for the surgical trauma. Loaded with active substances, the coating may help to deliver drugs to the apical parts of the cochlea where hair cells reside in patients with residual hearing.

Abstract:

OBJECTIVE: To adapt the LittlEars questionnaire into Polish and to evaluate the psychometric properties of the Polish version of the questionnaire. METHODS: A back-translation method was used to translate the LittlEars questionnaire into Polish. The translated version was first evaluated by means of an expert-appraisal method. After having improved the Polish version of LittlEars with the results obtained from that evaluation, various psychometric analyses were conducted. Study participants included 310 parents or other caregivers of children with normal hearing whose ages ranged between 0.5 and 24.0 months. Corrected item-total correlations were calculated to evaluate the extent to which the different questions distinguish levels of auditory development of the assessed children. Cronbach's alpha coefficient—to evaluate internal consistency across items—was also calculated. To obtain estimates of validity, correlations between item/total score and age were calculated. A non-linear regression model was derived to obtain normative data for expected and minimum values of total scores from the questionnaire according to age. RESULTS: Corrected item-total correlations ranged from 0.14 to 0.84. The Cronbach's alpha coefficient was 0.95, indicating that the measurements were highly reliable. The linear correlation between total scores and age was 0.90 (p<.001). The regression analysis conducted to obtain normative data showed that 83% of the variance in the total scores can be explained by age. CONCLUSION: The results of psychometric analyses support the use of the Polish version of the LittlEars questionnaire as a sensitive and reliable tool to assess the development of auditory behavior in Polish children between 3 and 24 months of age.

Abstract:

Music plays an important role in the daily life of cochlear implant (CI) users, but electrical hearing and speech processing pose challenges for enjoying music. Studies of unilateral CI (UCI) users’ music perception have found that these subjects have little difficulty recognizing tempo and rhythm but great difficulty with pitch, interval and melody. The present study is an initial step towards understanding music perception in bilateral CI (BCI) users. The Munich Music Questionnaire was used to investigate music listening habits and enjoyment in 23 BCI users compared to 2 control groups: 23 UCI users and 23 normal-hearing (NH) listeners. Bilateral users appeared to have a number of advantages over unilateral users, though their enjoyment of music did not reach the level of NH listeners.

Abstract:

Nineteen adults and 9 children who received a unilateral cochlear implant between 2002 and 2007 were included in the study. All subjects were preoperatively diagnosed with significant residual hearing in low frequencies, termed as ‘partial deafness’, and were implanted according to a 6-step round window surgical technique for partial deafness cochlear implantation. Hearing was preserved to a great extent in the partial deafness cochlear implantation (PDCI) group. After a short period following activation of the cochlear implant, highly significant improvement in the recognition of monosyllabic words was observed. With a developed round window surgical procedure and limited electrode insertion, hearing can be preserved in the majority of patients with partial deafness. PDCI is a feasible means of treating individuals who have good low-frequency hearing but severe to profound hearing loss in the mid to high frequencies.

Abstract:

BACKGROUND: Recent developments in the field of electronic hearing prostheses have allowed for the introduction of auditory brainstem implants in patients with neurofibromatosis type 2. CASE REPORT: Bilateral electric stimulation from 2 sequentially placed auditory brainstem implants was applied in a 27-year-old man with neurofibromatosis type 2. CONCLUSIONS: Results of the present case support further application of bilateral electric stimulation from auditory brainstem implants for patients with neurofibromatosis type 2.

Abstract:
CONCLUSION: A so far unattained high rate (100%) of residual hearing preservation in cochlear implantation for electric-acoustic stimulation could be achieved using sophisticated surgical techniques in combination with the MedEl Flex EAS electrode. OBJECTIVES: This study aimed to gather first audiological and surgical results from the experience gained with the new MedEl Flex EAS electrode array. PATIENTS AND METHODS: Nine patients (aged 7.62-71.32 years) with profound high frequency hearing loss were supplied with this atraumatic electrode, which was designed to preserve residual hearing despite intracochlear insertion of an electrode array. All patients were implanted by the same surgeon. RESULTS: Hearing preservation was achieved in all patients (complete preservation 44.44%) after a mean follow-up period of 9.73 months. Mean monosyllabic test scores improved from 9% correct with the hearing aid alone to 48% with the cochlear implant and to 65% in the electric-acoustic mode.

Abstract:
OBJECTIVES: Fitting of the cochlear implant speech processor on young children is often a challenge for the clinician. One way to obtain a reliable programme is to use an objective fitting method such as eSRT. This paper aims to demonstrate validity and reliability of using eSRT as a fitting tool, and to show outcomes through a series of small studies. SUBJECTS AND METHODS: A number of groups of children participated in a series of small eSRT studies assessing correlation to behavioural programmes, test-retest reliability, incidence, stability and measurement in the awake and sleep state. Sound field measurements and speech perception tests were conducted. RESULTS: There is a significant correlation to behavioural programmes, good test-retest reliability, high incidence, higher eSRTs measured under sedation and stable programmes over time. Sound field scores range from 37 to 33dB across the audiogram, mean closed-set monosyllable scores were 81% and GASP scores were 7.6/10. CONCLUSIONS: A series of small studies demonstrate the viability of using eSRT to programme a cochlear implant in small children.

Abstract:
The promontory stimulation test (PST) using a needle electrode has been used to evaluate the sense of the auditory nerve as a preoperative examination for cochlear implant in adults. Because this is a painful test, it is not suitable for children. It has been reported that children with inner ear anomaly showed poorer outcomes of hearing after cochlear implant. Electroaudiometry developed by Med-El Corporation, which is noninvasive, is a more suitable procedure for young children. Patients were three children less than five years old with inner ear anomaly. Two patients showed common cavity, and one showed narrow IAC with hypoplastic cochlear anomaly. By using Electroaudiometry, we analyzed electro-neural hearing of these children before cochlear implant, and compared their hearing after cochlear implant. Three children seemed to have residual electro-neural hearing because the dynamic range between stimulus level (SL) and uncomfortable level (UCL) was detected by using Electroaudiometry. After cochlear implant, their pure-tone audiograms showed moderate hearing thresholds, and their hearing detection and speech perception improved. These results suggest that Electroaudiometry is available for evaluating electro-neural hearing in young children with inner ear anomaly. It can provide useful information for a successful cochlear implant and evaluation of postoperative performances.

Abstract:
Objective: To evaluate speech performance, in quiet and noise, and localization ability in adult patients who had undergone bilateral and simultaneous implantation. Study Design: Prospective multi-center study. Methods: Twenty-seven adult patients with profound or total hearing loss were bilaterally implanted in a single-stage
procedure, and simultaneously activated (Med-El, Combi 40/40+). Subjects were assessed before implantation and at 3, 6 and 12 months after switch-on. Speech perception tests in monaural and binaural conditions were performed in quiet and in noise using disyllabic words, with speech coming from the front and a cocktail party background noise coming from 5 loudspeakers. Sound localization measurements were also performed in background noise coming from 5 loudspeakers positioned from -90 degrees to +90 degrees azimuth in the horizontal plane, and using a speech stimulus. Results: There was a bilateral advantage at 12 months in quiet (77 +/- 5.0% in bilateral condition, 67 +/- 5.3% for the better ear, p < 0.005) and in noise (signal-to-noise ratio +15 dB: 63 +/- 5.9% in bilateral condition, 55 +/- 6.9% for the better ear, p < 0.05). Considering unilateral speech scores recorded in quiet at 12 months, subjects were categorized as ‘good performers’ (speech comprehension score >/=/60% for the better ear, n = 19) and ‘poor performers’ (n = 8). Subjects were also categorized as ‘asymmetrical’ (difference between their 2 unilateral speech scores >/=/20%, n = 11) or ‘symmetrical’ (n = 16). The largest advantage (bilateral compared to the better ear) was obtained in poor performers: +19% compared to +7% in good performers (p < 0.05). In the group of good performers, there was a bilateral advantage only in cases of symmetrical results between the 2 ears (n = 10). In the group of poor performers, the bilateral advantage was shown in both patients with symmetrical (n = 6) and asymmetrical results (n = 2). In bilateral conditions, the sound localization ability in noise was improved compared to monaural conditions in patients with symmetrical and asymmetrical performance between the 2 ears. No preoperative factor (age, duration of deafness, use of hearing aids, etiology, etc.) could predict the asymmetrical performance, nor which ear would be the best. Conclusion: This study demonstrates a bilateral advantage (at 12 months after the implantation) in speech intelligibility and sound localization in a complex noisy environment. In quiet, this bilateral advantage is shown in cases of poor performance of both ears, and in cases of good performance with symmetrical results between the 2 ears. No preoperative factor can predict the best candidates for a simultaneous bilateral implantation.

Abstract:
The aim of this clinical study was to assess speech recognition in noise after cochlear implantation in subjects with single-sided deafness and incapacitating tinnitus. 20 subjects complaining of severe intractable tinnitus unresponsive to treatment received a MED-EL cochlear implant (CI). 11 subjects had normal hearing (NH group) on the contralateral side, while 9 used a hearing aid (HA group). The subjects were tested in noise in two listening conditions, i.e. with their acoustic hearing only and with adding the CI to the acoustic hearing (binaural). Subjective improvement in daily life was evaluated using the Speech Spatial and Qualities Hearing Scale (SSQ). The summation effect (3.3 dB for the HA group and 0.6 dB for the NH group) is not significant in both groups. A significant squelch effect of adding the CI was seen for the HA users (3.8 dB), but not for the NH group (1.2 dB). Additionally, a significant effect of adding the CI was found for the spatial configuration where noise is presented in front and speech on the CI side for both the HA group (6.5 dB) and the NH group (1.7 dB). Results of the SSQ show a significant overall benefit of wearing the CI for both groups. The preliminary results of these 20 subjects suggest that cochlear implantation can improve hearing in people suffering from single-sided deafness combined with tinnitus.

Abstract:
Background: Cochlear implant is a medical treatment option for individuals with severe to profound sensori-neural hearing loss on account of non-functioning cochlea or part thereof. Technology is ever evolving and the candidacy criteria are widening. Appropriate selection of patient, successful implantation of an appropriate device and adequate post-implantation rehabilitation protocol are the key factors that dictate the eventual outcome. Bilateral cochlear implantation in children and combined electro-acoustic stimulation are the new developments in this field of rehabilitation for the deaf. Pakistan Cochlear Implant Programme was started in year 2000 and one hundred and fifty subjects have undergone cochlear implant surgery so far at Karachi, Lahore and Peshawar since. This prospective study was designed to evaluate the development of auditory perception skills and language in children, over a twelve months period, following cochlear implantation. Methods: Twenty-one patients were enrolled in this evaluation. These were divided into three groups as per age factor. Group 1 included eleven children of ages less than five years, Group 2 included eight children of ages between five and nine years
whereas, Group 3 included two eleven years old children. Furthermore, subjects in Group 1 & 2 were pre-lingual whereas those in Group 3 were post-lingual. The three groups were evaluated using “Evaluation of Auditory Responses to Speech” (EARS). Results: Improvement in performance on all measures was noticed in all the groups over a twelve months period following implantation. Dynamics of improvement in auditory skills suggested more and rapid development in younger age group. Conclusion: Children of varying ages, both pre and post lingual, did show improvement in the development of auditory perception skills, that was evident more in the younger age group.

Abstract:

OBJECTIVE: To investigate the level of demagnetization of the magnets and temperature changes in cochlear implants (CIs) in a 3.0 tesla (3.0T) MRI. STUDY DESIGN: Experimental. SUBJECTS AND METHODS: Demagnetization and remagnetization measurements were done on magnets for different types of CIs. Temperature of different body and electrode sides was measured in the MRI environment. RESULTS: Demagnetization of the magnets of the CI is dependent on the angle between the magnetic field of the CI magnet and the MRI. When this angle was greater than 80 degrees, relevant demagnetization occurred and sufficient remagnetization was not possible with the 3.0T MRI magnet. Maximum temperature rise was 0.5 degrees C. CONCLUSIONS: Patients carrying CIs with non-removable magnets should not enter a 3.0T MRI device in a routine clinical setup. Under special conditions (angle between the two magnets less than 80 degrees) imaging in a 3.0T MRI may be possible without harming the patient or the implant.

Abstract:

OBJECTIVES: Tinnitus is a well-known, difficult-to-treat symptom of hearing loss. Users of cochlear implants (CIs) have reported a reduction in tinnitus following implantation for bilateral severe-to-profound deafness. This study assessed the effect of electrical stimulation via a CI on tinnitus in subjects with unilateral deafness and ipsilateral tinnitus who underwent implantation in an attempt to treat tinnitus with the CI. METHODS: Twenty-one subjects who complained of severe intractable tinnitus that was unresponsive to treatment received a CI. Tinnitus loudness was measured with a Visual Analog Scale; loudness percepts were recorded with the device activated and deactivated. Tinnitus distress was measured with the Tinnitus Questionnaire before and after implantation. RESULTS: Electrical stimulation via a CI resulted in a significant reduction in tinnitus loudness (mean +/- SD; 1 year after implantation, 2.4 +/- 1.8; 2 years after implantation, 2.5 +/- 1.9; before implantation, 8.5 +/- 1.3). With the device deactivated, tinnitus loudness was still reduced to between 6.1 and 7.0 over 24 months. The Tinnitus Questionnaire revealed a significant positive effect of CI stimulation. CONCLUSIONS: Unilateral tinnitus resulting from single-sided deafness can be treated with electrical stimulation via a CI. The outcomes of this pilot study demonstrate a new method for treatment of tinnitus in select subjects, perhaps an important new indication for cochlear implantation.

Abstract:

In cochlear implants, the signal is filtered into different frequency bands and transmitted to electrodes along the cochlea. In this study the frequency-place function for electric hearing was investigated as a means to possibly improve speech coding by delivering information to the appropriate cochlear place. Fourteen subjects with functional hearing in the contralateral ear have been provided with a MED-EL cochlear implant in the deaf ear in order to reduce intractable tinnitus. Pitch scaling experiments were performed using single-electrode, constant-amplitude, constant-rate stimuli in the implanted ear, and acoustic sinusoids in the contralateral ear. The frequency-place function was calculated using the electrode position in the cochlea as obtained from postoperative skull radiographs. Individual frequency-place functions were compared to Greenwood's function in normal hearing. Electric stimulation elicited a low pitch in the apical region of the cochlea, and shifting the stimulating electrode towards the basal region elicited increasingly higher pitch. The frequency-place function did
not show a significant shift relative to Greenwood's function. In cochlear implant patients with functional hearing in the non-implanted ear, electrical stimulation produced a frequency-place function that on average resembles Greenwood's function. These results differ from previously derived data.

Abstract:

PURPOSE: Electric acoustic stimulation (EAS) relies on the preservation of low-frequency hearing and adequate amplification of these frequencies. EAS has been achieved by fitting the cochlear implant (CI) speech processor together with an ipsilateral in-the-ear hearing aid. This study will evaluate the outcomes when CI/EAS users upgrade to a new combination of hearing aid and speech processor in 1 device (DUET). METHOD: Nine EAS patients participated in this study. Before switchover and after 2 and 8 months of DUET device use, they were assessed using monosyllables and sentences in quiet and in noise. Additionally, a questionnaire, the Abbreviated Profile for Hearing Aid Benefit (APHAB), was used to evaluate subjective impressions. RESULTS: All subjects performed equally well, or even better, after switchover. This was also demonstrated over time. The participants with EAS before switchover performed equally afterwards, while those who used CI only did markedly better with the new device, especially in noisy conditions. Slight preference for the new system was also demonstrated with the APHAB. CONCLUSION: All subjects showed benefit in noise; CI-only users before switchover particularly benefited from the new hearing system. Those who applied EAS before switchover performed equally well. The DUET allows individuals better access to EAS

Abstract:

Conclusion. A high rate of hearing preservation during cochlear implantation for electric acoustic stimulation (EAS) is possible, even when surgery is conducted by a number of different surgeons. Objectives. This study aimed to determine the degree of hearing preservation using surgery for EAS in a European multi-centre clinical investigation. It also aimed to demonstrate the effect of EAS in individuals with residual low frequency hearing, both on speech perception and on subjective quality of life measures. Patients and methods. Eighteen patients with profound high frequency hearing loss were recruited in five participating European centres. Subjects were assessed based on an audiologic test battery, as well as on a subjective hearing aid benefit questionnaire. Each subject underwent attempted hearing preservation cochlear implantation using the MED-EL C40+ device with a Medium electrode. Residual ipsilateral hearing and speech discrimination abilities were assessed at defined intervals up to 12 months after the combined electric-acoustic mode was introduced. Results showed that some degree of hearing preservation was possible in 15718 patients. All subjects showed statistically significant benefit on all three speech perception tests over time. These significant benefits were also reflected in the subjective benefit outcomes.

Abstract:

Conclusion. The results indicate that the need for upgrading the processor and/or speech coding strategy should be considered individually, if the processor and coding strategy are functioning properly and a good level of speech perception has been achieved. Objectives. Our aim was to study the intra-individual differences of the body-worn CIS-PRO+ and the behind-the-ear-worn TEMPO+ cochlear implant systems used in the MED-EL Combi40/Combi40+ implants. Subjects and methods. The hearing level, sentence, word and phoneme recognition of eight adult subjects were determined in an ABA study design. Additionally, a self-assessment questionnaire was used. Mean scores and 95% confidence intervals, and individual scores were analysed. Results. The subjects tended to score slightly better on word and phoneme recognition with CIS-PRO+ and CIS strategy than with TEMPO+ and CIS+, but there were no statistically significant differences. Subjectively the participants ranked speech perception and discussion in noise to be slightly easier with TEMPO+ and CIS+. Six of the eight subjects preferred TEMPO+ and CIS+ and two of eight preferred CIS-PRO+ with CIS or number-of-maxima

Abstract:
None.

Abstract:
Changes in selection criteria have led to the inclusion of pre-lingually deafened adolescents as potential cochlear implant candidates, depending on their degree of residual hearing, access to and use of acoustic amplification, use of oral communication, and other factors such as motivation and support. Outcomes results in adolescents vary widely, and it has become evident that there is a need for a test battery that can assess a wide range of skills over time. This article presents the development and validation of one such test battery: TeenEARS. Eleven tests were assessed for inclusion in the test battery. Consideration was given to the ability of the test to measure improvement over time; the fact that there needed to be easier and more difficult tests in terms of language, communication and listening; the need for closed and open-set assessments; and a range of listening tasks: from sounds to conversational language. Data on 23 adolescents assessed and judgment based on clinical experience resulted in eight tests being included in the TeenEARS test battery.

Abstract:
None.

Abstract:
Objective: Binaural hearing has been shown to support better speech perception in normal-hearing listeners than can be achieved with monaural stimulus presentation, particularly under noisy listening conditions. The purpose of this study was to evaluate whether bilateral electrical stimulation could confer similar benefits for cochlear implant listeners. Design: A total of 26 postlingually deafened adult patients with short duration of deafness were implanted at five centers and followed up for 1 yr. Subjects received MED-EL COMBI 40+ devices bilaterally; in all but one case, implantation was performed in a single-stage surgery. Speech perception testing included CNC words in quiet and CUNY sentences in noise. Target speech was presented at the midline (0 degrees), and masking noise, when present, was presented at one of three simulated source locations along the azimuth (-90, 0, and +90 degrees). Results: Benefits of bilateral electrical stimulation were observed under conditions in which the speech and masker were spatially coincident and conditions in which they were spatially separated. Both the “head shadow” and “summation” effects were evident from the outset. Benefits consistent with “binaural squelch” were not reliably observed until 1 yr after implantation. Conclusions: These results support a growing consensus that bilateral implantation provides functional benefits beyond those of unilateral implantation. Longitudinal data suggest that some aspects of binaural processing continue to develop up to 1 yr after implantation. The squelch effect, often reported as absent or rare in previous studies of bilateral cochlear implantation, was present for most subjects at the 1 yr measurement interval.

Abstract:
Conclusions. Telephone adapters can help cochlear implanted patients to enhance their telephonic conversations. However, these devices should be further developed to be useful for daily life. Objectives. To test a mobile
telephone adapter to improve speech discrimination by mobile telephone in Combi40+ users. To evaluate the influence of the mobile telephone in communication. Subjects and methods. Seventeen Combi40+ implantees were tested with bisyllabic words presented through mobile telephones with and without a telephone adapter in quiet and noisy environments. Speech audiometries in open field were obtained for every patient. Results. Mean speech discrimination without the adapter in a quiet environment was 51.2%. In a noisy environment, mean discrimination increased significantly with the adapter from 30.3% to 42.9%. No statistically significant difference was found between speech discrimination in the quiet environment without the adapter and speech discrimination in the noisy environment with the adapter. When comparing speech discrimination in open field without lip-reading with equivalent telephonic conditions a statistically significant difference was found in favour of the open field.

Abstract:

OBJECTIVE: Electric acoustic stimulation (EAS) is an increasingly popular means of treating individuals with a steeply sloping mid-to-high frequency hearing loss, who traditionally do not benefit from hearing instruments. These persons often have too much residual hearing to be considered for a cochlear implant. Several studies have demonstrated the ability both to preserve the remaining low-frequency hearing in these individuals, and to provide significant benefit through combining a cochlear implant with a hearing aid to amplify the same ear. These improvements in performance have been especially noted in noise. Often overlooked is that these outcomes may be influenced by the fitting parameters of both the cochlear implant and the hearing aid. DESIGN: This study assessed four EAS subjects, with a minimum of 1 month’s EAS use, on eight different fitting parameters. Sentence testing in different noise levels (+15, +10, and +5 dB SPL) was conducted. Subjects also evaluated each condition using a visual analogue scale. RESULTS: Results demonstrated that a reduced overlap of cochlear implant and hearing aid amplification produced best results across listening conditions. CONCLUSIONS: The hearing aid should be fit to a patient-specific modified audiogram at least up to the point where low-frequency hearing is not measurable. The cochlear implant should be fit from a higher frequency point than is standard in patients without residual hearing in the implanted ear, to provide reduced overlap with the amplification provided by the hearing aid. Therefore, a small amount of overlap between the frequency ranges used by the hearing aid and the cochlear implant seems beneficial.

Abstract:

Objectives: The main purpose of the study was to measure thresholds for interaural time differences (ITDs) and interaural level differences (ILDs) for acoustically presented noise signals in adults with bilateral cochlear implants (CIs). A secondary purpose was to assess the correlation between the ILD and ITD thresholds and error scores in a horizontal plane localization task, to test the hypothesis that localization by individuals with bilateral implants is mediated by the processing of ILD cues. Design: Eleven adults, all postlingually deafened and all bilaterally fitted with MED-EL COMBI 40+ CIs, were tested in ITD and ILD discrimination tasks in which signals were presented acoustically through headphones that fit over their two devices. The stimulus was a 200-msec burst of Gaussian noise bandpass filtered from 100 to 4000 Hz. A two-interval forced-choice adaptive procedure was used in which the subject had to respond on each trial whether the lateral positions of the two sound images (with the interaural difference favoring the left and right sides in the two intervals) moved from left-to-right or right-to-left. Results: In agreement with previously reported data, ITD thresholds for the subjects with bilateral implants were poor. The best threshold was ~400 µsec, and only five of 11 subjects tested achieved thresholds <1000 µsec. In contrast, ILD thresholds were relatively good; mean threshold was 3.8 dB with the initial compression circuit on the implant devices activated and 1.9 dB with the compression deactivated. The ILD and ITD thresholds were higher than previously reported thresholds obtained with direct electrical stimulation (generally, <1.0 dB and 100 to 200 µsec, respectively). When the data from two outlying subjects were omitted, ILD thresholds were highly correlated with total error score in a horizontal-plane localization task, computed for sources near midline (r = 0.87, p < 0.01). Conclusions: The higher ILD and ITD thresholds obtained in this study with acoustically presented signals (when compared with prior data with direct electrical stimulation) can be attributed—at least partially—to the signal
processing carried out by the CI in the former case. The processing strategy effectively leaves only envelope information as a basis for ITD discrimination, which, for the acoustically presented noise stimuli, is mainly coded in the onset information. The operation of the compression circuit reduces the ILDs in the signal, leading to elevated ILD thresholds for the acoustically presented signals in this condition. The large magnitude of the ITD thresholds indicates that ITDs could not have contributed to the performance in the horizontal-plane localization task. Overall, the results suggest that for subjects using bilateral implants, localization of noise signals is mediated entirely by ILD cues, with little or no contribution from ITD information.

Abstract:
Speech understanding was tested for seven listeners using 12-electrode MedEl cochlear implants (CIs) and six normal-hearing listeners using a CI simulation. Eighteen different types of processing were evaluated, which varied the frequency-to-tonotopic place mapping and the upper boundary of the frequency and stimulation range. Spectrally unwarped and warped conditions were included. Unlike previous studies on this topic, the lower boundary of the frequency and stimulation range was fixed while the upper boundary was varied. For the unwarped conditions, only eight to ten channels were needed in both quiet and noise to achieve no significant degradation in speech understanding compared to the normal 12-electrode speech processing. The unwarped conditions were often the best conditions for understanding speech; however, small changes in frequency-to-place mapping (<0.77 octaves for the most basal electrode) yielded no significant degradation in performance from the nearest unwarped condition. A second experiment measured the effect of feedback training for both the unwarped and warped conditions. Improvements were found for the unwarped and frequency-expanded conditions, but not for the compressed condition. These results have implications for new CI processing strategies, such as the inclusion of spectral localization cues.

Abstract:
Objectives: To compare speech test performance of adults with partial deafness cochlear implantation (PDCI) with that of adults with cochlear implant (CI). Based on the results, our objective is to determine the efficacy of the two applications of cochlear implantation, the first characterized by a shallow electrode insertion and preservation of low-frequency natural hearing for partial deafness, and the second characterized by a very deep electrode insertion used in subjects with severe to profound deafness. All the PDCI participants in this study were fitted with a recently upgraded DUET Hearing System from MedEl Corporation, Innsbruck, Austria. Study Design: This is a two-group comparison study. Eleven experienced PDCI adults and 22 postlingually deafened CI adults participated in this study. Subjects were implanted with either COMBI 40+ or PULSAR cochlear implant. Methods: Subjects were tested with monosyllable and sentence tests in Polish in quiet and under various signal-to-noise ratio (SNR) in the conditions of DUET only, CI only, DUET hearing aid (HA) only, and best aided (DUET plus contralateral hearing). CI subjects were tested with their CI. Results: PDCI subjects performed significantly better than CI subjects did. Speech tests demonstrated the best results in the conditions of best aided and DUET only. The poorest results were obtained in the condition DUET HA only. Results show a greater benefit for the PDCI group of subjects fitted with the DUET, compared to the CI alone group. Conclusions: The shallow electrode array insertion with preserved low-frequency hearing is a highly effective method for the treatment of partial deafness. The combination of HA and CI processor, i.e., the DUET, is beneficial in noise and in quiet.

Abstract:
OBJECTIVE: To investigate the feasibility of applying the suprameatal approach (SMA) for cochlear implantation in Chinese children with profound sensory hearing loss, and to demonstrate a technical modification incorporated in the procedure due to an observed racial difference. STUDY DESIGN: Retrospective study. SETTING: University hospital. PATIENTS: Forty-five Chinese children (total 47 ears) with profound sensory hearing loss were surgically treated from May 2005 to May 2006. The patients were followed anywhere from 1 month to 20 months postsurgery, with 30 patients being followed for more than 6 months. INTERVENTIONS: All patients received cochlear
implantation through the suprameatal approach. In this procedure, the cochleostomy was performed in one stage after the suprameatal tunnel was finished, rather than the two-stage approach described by Kronenberg (who firstly introduced the suprameatal approach). Three patients with low-lying dura (which is considered to be the contraindication for cochlear implantation with SMA) were treated with a further modified surgical approach. RESULTS: Among the 47 ears, full electrode pairs were completely inserted in 45 ears without surgical difficulties, but 1 ear was only fitted with 9 pairs of electrodes because of an ossified cochlea, and another with just 8 pairs of electrodes due to serious cochlear dysplasia. An intraoperative “gusher” occurred in the dysplasia case, and a small piece of temporalis muscle was used, along with biology glue, to seal the cochleostomy and prevent further leakage. In 1 case, the electrode was inserted into the cochlea through the tunnel lateral to the chorda tympani because adhesion had occurred between the incus and chorda tympani. There were no postoperative complications in any case. Thirty cases exhibited better hearing or speech development from cochlear implantation after more than 6 months of follow-up. CONCLUSIONS: The SMA was found to be a simple and safe technique for cochlear implantation in Chinese children. It enables wide exposure of the middle ear, and is especially suitable for cases with a narrow facial recess, an anteriorly located facial nerve, or an ossified cochlea. It is almost impossible to injure the facial nerve or the chorda tympani nerve. The cochleostomy can be performed in one stage in those patients with a normal cochlea. With some modifications, a low-lying dura will not be the absolute contraindication of SMA.

Abstract:
Frequency discrimination and pitch matching of implantees using combined electric and acoustic stimulation in either the same ear (EAS) or the opposite ear (bimodal condition) was assessed by means of adaptive procedures. EAS patients received either the MED-EL standard electrode or the recently introduced FLEX design with reduced diameter. Acoustic JNDF in EAS patients ranged from close to normal to grossly abnormal compared to a group of matched SNHL listeners. The median JNDF was 7.1% in the SNHL and 7.5% in the EAS group. There was no statistically significant difference in terms of JNDF between both groups of listeners. Frequency mapping was studied by means of an adjustment method where subjects were instructed to control the pitch of an acoustically presented sinusoid in reference to electrical stimulation. The findings demonstrate that the insertion of an intra-cochlear electrode does not significantly hamper the average frequency discrimination ability in EAS patients.

Abstract:
Objective: The main purpose of the study was to assess the ability of adults with unilateral cochlear implants to localize noise and speech signals in the horizontal plane. Design: Six unilaterally implanted adults, all postlingually deafened and all fitted with MED-EL COMBI 40+ devices, were tested with a modified source identification task. Subjects were tested individually in an anechoic chamber, which contained an array of 43 numbered loudspeakers extending from -90° to +90° azimuth. On each trial, a 200 millisecond signal (either a noise burst or a speech sample) was presented from one of nine active loudspeakers, and the subject had to identify which source (from the 43 loudspeakers in the array) produced the signal. Results: The relationship between source azimuth and response azimuth was characterized in terms of the adjusted constant error (C°). C° for three subjects was near chance (50.5°), whereas C° for the remaining three subjects was significantly better than chance (35°–44°). By comparison, C° for a group of normal-hearing listeners was 5.6°. For two of the three subjects who performed better than chance, monaural cues were determined to be the basis for their localization performance. Conclusions: Some unilaterally implanted subjects can localize sounds at a better than chance level, apparently because they can learn to make use of subtle monaural cues based on frequency-dependent head-shadow effects. However, their performance is significantly poorer than that reported in previous studies of bilaterally implanted subjects, who are able to take advantage of binaural cues.

Abstract:
Objective: To evaluate listening habits and quality of musical sound after cochlear implantation. Study design: A total of 89 consecutive, adult, postlingually deafened, cochlear implant recipients entered the study. Music questionnaire included questions about musical background, listening habits, and quality of musical sound through cochlear implants. Music perception was evaluated with the Primary Measures of Music Audiation (PMMA). The questionnaire and the PMMA were administered to 67 and 65 patients, respectively. Results: Listening habits significantly decreased postimplantation. The mean score (0-100) for the adjective pairs “like–dislike,” “sounds like music–doesn’t sound like music,” “natural–mechanical,” and “easy to follow–difficult to follow” was 60, 59, 50, and 40, respectively. The adjective pairs were associated with music enjoyment. Mean PMMA scores were 71 and 78 percent for tone and rhythm, respectively, with no association with music enjoyment. Conclusion: Music perception through a cochlear implant is a complex phenomenon that depends on audiological and nonaudiological factors.

Abstract:

None.

Abstract:

Conclusions. Taking into account the excellent results with significant improvements in the speech tests and the very high satisfaction of the patients using the new strategy, this first implementation of a fine structure strategy could offer a new quality of hearing with cochlear implants (CIs). Objective. This study consisted of an intra-individual comparison of speech recognition, music perception and patient preference when subjects used two different speech coding strategies with a MedEl Pulsar CI: continuous interleaved sampling (CIS) and the new fine structure processing (FSP) strategy. In contrast to envelope-based strategies, the FSP strategy also delivers subtle pitch and timing differences of sound to the user and is thereby supposed to enhance speech perception in noise and increase the quality of music perception. Patients and methods. This was a prospective study assessing performance with two different speech coding strategies. The setting was a CI programme at an academic tertiary referral centre. Fourteen post-lingually deaf patients using a MedEl Pulsar CI with a mean CI experience of 0.98 years were supplied with the new FSP speech coding strategy. Subjects consecutively used the two different speech coding strategies. Speech and music tests were performed with the previously fitted CIS strategy, immediately after fitting with the new FSP strategy and 4, 8 and 12 weeks later. The main outcome measures were individual performance and subjective assessment of two different speech processors. Results. Speech and music best scores improved statistically significantly after conversion from CIS to FSP strategy. Twelve of 14 patients preferred the new FSP speech processing strategy over the CIS strategy.

Abstract:

The thickness and quality of the skin overlying a cochlear implant is important for its integrity. It should be thick enough to protect the implant and prevent flap breakdown yet should not be so thick that it impedes the electronic signal or causes difficulty wearing the coil because of loss of the magnetic coupling. The principle of this study was to devise a method to assess the thickness of skin over a cochlear implant receiver stimulator package and prospectively measure this thickness during the first year following surgery. All patients studied were implanted with MED-EL COMBI 40+ implants. The first cohort consisted of 35 adults; the second 23 children. Various methods of measurement were assessed. In this study the principle of the Hall Effect electrode was used to measure the magnetic flux density of the magnet within the receiver stimulator package. Following standardization, results showed that skin thickness significantly thinned in the adult group before stabilizing. This was less obvious in children, probably due to the effect of the skin thickening as the child grows. Knowledge of skin thickness has implications relating to the functioning of an implant and avoiding potential flap related complications.

Abstract:

CONCLUSION: Despite the decrease in listening habits, about half of the patients still enjoy music post implantation. Better quality of sound through the implant improves music enjoyment and contributes to achievement of better postoperative quality of life (QOL). OBJECTIVES: To evaluate music perception and enjoyment in cochlear implant (CI) users, and to assess their influence on QOL. MATERIALS AND METHODS: Sixty-five post-lingually deaf CI recipients were enrolled in this study. A musical questionnaire evaluated musical background, listening habits, and quality of musical sound through the CI. The validated Glasgow Benefit Inventory (GBI) was used to quantify changes in QOL. RESULTS: Fifty-two patients answered the questionnaires. Listening habits (music enjoyment and hours spent listening to music per week) significantly decreased following implantation when compared with the same parameters before deafness. Nevertheless, 52% of the patients enjoyed music post implantation. The quality of musical sound was rated >50 (0-100 scale) for the adjective pairs 'like-dislike', 'sounds like music-doesn't sound like music' and 'natural-mechanical' by most users. Med-el device users obtained better scores in the adjective pair 'sounds like music-doesn't sound like music' than Cochlear device users. Recipients rating higher scores for quality of sound enjoyed music post implantation and had higher total GBI scores than those rating lower scores.

Abstract:

Conclusion. Amplitude weighting using the bell-shaped filter design within the OPUS speech processors allows the creation of pitches intermediate to those of two adjacent electrodes. This mechanism can be used for both sequential and simultaneous stimulation. Objectives. This paper describes frequency discrimination experiments which are based on amplitude weighting of two adjacent electrodes. The effects of sequential versus simultaneous stimulation of the electrode pair were investigated. Materials and methods. The experiment was performed using a laboratory system emulating the signal processing using bell-shaped filters in the MED-EL speech processors. The system transformed input files (wav-files) into the stimulation data stream which was transmitted to the implant via the OPUS processor coil. Pitch discrimination was assessed for up to three electrode pairs in each subject, using an adaptive test method. Results for sequential stimulation were collected in eight subjects, a comparison between sequential and simultaneous stimulation was made in five subjects. Results. Results show an average frequency discrimination of 8.8% for sequential stimulation and 11.2% for simultaneous stimulation, of the nominal test frequency. Frequency discrimination ability varied across subjects and test electrode pairs. The difference in performance between sequential and simultaneous stimulation was not statistically significant.

Abstract:

Aim: Hearing preservation is one of the major goals of acoustic neuroma surgery. In NF-2 patients, bilateral hearing loss is frequently caused by the disease or results from its treatment. Several implant devices for electrical stimulation of the cochlear nucleus have been developed to restore serviceable hearing in these patients. We report our experience and results using a high rate continuous interleaved sampling (CIS) auditory brainstem implant (ABI). Methods: Between June 1997 and May 2004, 24 NF-2 patients were managed by our group. In 20 patients an ABI was implanted successfully. The cochlear nucleus was located using anatomical landmarks and E-ABR recordings after resection of the neuroma via a retrosigmoid approach in the semi-sitting position. The 12-channel stimulating electrode array was inserted and fixed in the lateral recess. There were no surgical complications related to implantation apart from pseudomeningo that were managed by lumbar drainage. Results: In one patient the electrode array became dislocated and this necessitated revision surgery which was successful. One patient failed to gain benefit from the implant. Overall, 70% of electrodes were found to be serviceable for auditory stimulation, 5.3% of electrodes were primarily nonauditory, and in 7.8% side effects during stimulation were observed. Lip reading was improved by more than 100% as a result of the additional auditory
input. For many patients, comprehension of open speech was restored to a useful level. Almost all patients were able to perceive environmental sounds and tinnitus was masked. Conclusions: Restoration of hearing using ABI in NF-2 patients is a safe and promising procedure for those who would otherwise be totally deaf. The high rate CIS speech processing strategy has proven to be very useful and effective in direct cochlear nucleus stimulation.

Abstract:
OBJECTIVE: Partial deafness cochlear implantation and electric-acoustic stimulation have proven to be a useful method of treating adults with a ski-slope type hearing loss. Good hearing preservation and speech perception outcomes have been reported. This study aims to assess partial deafness cochlear implantation in children. METHOD: Nine children, ranging in age from 4.2 to 12 years, received a cochlear implant following the round window surgical technique for partial deafness cochlear implantation. Hearing preservation was assessed by pure-tone audiometry and speech perception outcomes were measured using monosyllable word tests in quiet and noise. Data are available for most children up to a period of 1 year. RESULTS: Hearing could be preserved partially in all cases, however, one child does not have sufficient preservation to make use of electric-acoustic stimulation. The eight children with sufficiently preserved hearing either use the natural low frequency hearing in combination with a cochlear implant to hear or use the DUET combined hearing system. Speech perception tests showed improvement in quiet and noise over time. CONCLUSION: Results suggest that partial deafness cochlear implantation is a viable treatment method in children. However, surgery should only be conducted by an experienced surgeon and parents need to be carefully counselled about the risks and benefits of partial deafness cochlear implantation.

Abstract:
The aim of this study was to assess the possibility of using electrically elicited stapedius muscle reflex (ESR) for estimation of most comfortable loudness level (MCL), one of the most important electrical stimulation parameter in cochlear implant system fitting. The material of this study consisted of 48 adult patients, sampled from the group of MedEl Combi 40+ and MedEl Pulsar users, implanted in the Institute of Physiology and Pathology of Hearing. Their cochlear implant system was fitted according to the results of psychophysical tests: loudness scaling and electrical amplitude growth function. ESR measurement was performed, and ESR thresholds and MCL values were compared. Good correlation after 12 months of using cochlear implant system was observed. Results indicate that ESR can be included in cochlear implant system fitting procedure as objective measurement for prediction of optimal MCL values.

Abstract:
OBJECTIVES: The main purpose of the study was to assess the ability of adults with bilateral cochlear implants to localize noise and speech signals in the horizontal plane. A second objective was to measure the change in localization performance in these adults between approximately 5 and 15 mo after activation. A third objective was to evaluate the relative roles of interaural level difference (ILD) and interaural temporal difference (ITD) cues in localization by these subjects. DESIGN: Twenty-two adults, all postlingually deafened and all bilaterally fitted with MED-EL COMBI 40+ cochlear implants, were tested in a modified source identification task. Subjects were tested individually in an anechoic chamber, which contained an array of 43 numbered loudspeakers extending from -90 degrees to +90 degrees azimuth. On each trial, a 200-msec signal (either a noise burst or a speech sample) was presented from one of 17 active loudspeakers (span: +/-80 degrees), and the subject had to identify which source from the 43 loudspeakers in the array produced the signal. Subjects were tested in three conditions: left device only active, right device only active, and both devices active. Twelve of the 22 subjects were retested approximately 10 mo after their first test. In Experiment 2, the spectral content and rise-decay time of the noise stimulus were manipulated. RESULTS: The relationship between source azimuth and response azimuth was
characterized in terms of the adjusted constant error (\(\hat{c}\)). (1) With both devices active, \(\hat{c}\) for the noise stimulus varied from 8.1 degrees to 43.4 degrees (mean: 24.1 degrees). By comparison, \(\hat{c}\) for a group of listeners with normal hearing ranged from 3.5 degrees to 7.8 degrees (mean: 5.6 degrees). When subjects listened in unilateral mode (with one device turned off), \(\hat{c}\) was at or near chance (50.5 degrees) in all cases. However, when considering unilateral performance on each subject's better side, average \(\hat{c}\) for the speech stimulus was 47.9 degrees, which was significantly (but only slightly) better than chance. (2) When listening bilaterally, error score was significantly lower for the speech stimulus (mean \(\hat{c} = 21.5\) degrees) than for the noise stimulus (mean \(\hat{c} = 24.1\) degrees). (3) As a group, the 12 subjects who were retested 10 mo after their first visit showed no significant improvement in localization performance during the intervening time. However, two subjects who performed very poorly during their first visit showed dramatic improvement (error scores were halved) over the intervening time. In Experiment 2, removing the high-frequency content of noise signals resulted in significantly poorer performance, but removing the low-frequency content or increasing the rise-decay time did not have an effect. CONCLUSIONS: In agreement with previously reported data, subjects with bilateral cochlear implants localized sounds in the horizontal plane remarkably well when using both of their devices, but they generally could not localize sounds when either device was deactivated. They could localize the speech signal with slightly, but significantly better accuracy than the noise, possibly due to spectral differences in the signals, to the availability of envelope ITD cues with the speech but not the noise signal, or to more central factors related to the social salience of speech signals. For most subjects the remarkable ability to localize sounds has stabilized by 5 mo after activation. However, for some subjects who perform poorly initially, there can be substantial improvement past 5 mo. Results from Experiment 2 suggest that ILD cues underlie localization ability for noise signals, and that ITD cues do not contribute.

Article in German.

Abstract:

BACKGROUND: Numerous people with cochlear implants (CI) report difficulties in listening to music even though they understand speech quite well. One reason for this is a limited perception of pitch and timbre. In this study ability of adult CI subjects to discriminate musical pitch is investigated. PATIENTS AND METHODS: In two psychoacoustic experiments, each conducted in 10 adult CI subjects provided with MED-EL Combi 40+ cochlear implant devices and a control group of subjects with normal hearing, individual discrimination abilities for musical pitch perception were determined. To investigate the influence of the group of instruments on discrimination ability, stimuli representing four different groups of instruments were used: woodwind (clarinet), brass (trumpet), strings (violin) and keyboard instruments (piano). RESULTS: The discrimination thresholds determined varied between individual CI subjects, and on average they were significantly higher for the piano than for the other three instruments. CONCLUSIONS: The results show that in subjects with CI pitch perception differs from instrument to instrument and is in general worse than in persons with normal hearing.

Abstract:

Stimulus artifact is one of the main limitations when considering electrically evoked compound action potential for clinical applications. Alternating stimulation (average of recordings obtained with anodic-cathodic and cathodic-anodic bipolar stimulation pulses) is an effective method to reduce stimulus artifact when evoked potentials are recorded. In this paper we extend the concept of alternating stimulation by combining anodic-cathodic and cathodic-anodic recordings with a weight in general different to 0.5. We also provide an automatic method to obtain an estimation of the optimal weights. Comparison with conventional alternating, triphasic stimulation and masker-probe paradigm shows that the generalized alternating method improves the quality of electrically evoked compound action potential responses.

OBJECTIVE: Minimal invasive approaches have been described for cochlear implantation. However, the number of reports about minimal invasive approaches for MED-EL devices is sparse. In this technical note, we describe our pediatric cochlear implantation and incision techniques for MED-EL devices. METHODS: Among 92 cochlear implantations performed between November 2002 and November 2006, there were 32 consecutive pediatric cochlear implantations with MED-EL devices which were performed between July 2005 and October 2006. In our technique, standard posterior tympanotomy and cochleostomy were performed after 4- to 5-cm mini-incisions in the postauricular region. However, suture fixations were not used for the implant receiver nor its electrode. RESULTS: There were 14 girls and 18 boys with a mean age of 3.9 years. The mean follow-up duration was 5.8 months. No flap necrosis, hematoma or infection, nor implant migration, extrusion or breakdown were encountered. Revision surgery was performed in 3 patients due to cochlear ossification, perilymph leakage and extracochlear implantation. CONCLUSION: MED-EL implantation can be performed using small incisions without suture fixation of the receiver and its electrode.

Abstract:
CONCLUSION: Successful hearing preservation is possible in individuals with excellent low frequency hearing. This is possible due to the partial insertion of an atraumatic electrode using an atraumatic round window surgical technique. OBJECTIVES: This paper describes the round window surgical technique used to preserve excellent low frequency hearing in patients receiving partially inserted MED-EL cochlear implant electrodes. Results of preserved low frequency hearing in partial deafness cochlear implantation (PDCI) are reported. PATIENTS AND METHODS: The surgical approach is described in detail. Ten subjects received a partial insertion of a standard electrode, using the round window approach. Pure tone audiometry was conducted in the implanted and non-implanted ear preoperatively, at implant fitting and then at 1, 3, 6 and 12 months after initial device fitting. RESULTS: Results show hearing preservation in 9 of the 10 subjects. One subject lost all hearing 2 weeks after cochlear implantation. Hearing has remained essentially stable up to the 1 year postoperative period. Eight of the nine subjects use the cochlear implant together with their natural low frequency hearing; one subject uses a hearing aid in the implanted ear to amplify the low frequencies.

Abstract:
Objective: Aim of this paper is to prove the applicability of intra-operative recordings of auditory brainstem responses during cochlear implantation. Methods: The clinical practicability of intra-operative monitoring of hearing thresholds (Notched-Noise BERA, Amplitude Modulation Following Response [AMFR]) is presented in the respective case. The recordings were performed prior to the cochlear implantation and were compared with those obtained during and after cochlear implantation. Results: It is demonstrated that the patient’s cochlear function can be monitored; residual hearing is available after surgery. Conclusion: The possibility of monitoring of hearing thresholds may add some security to the concept of electric-acoustic stimulation.

Abstract:
Conclusion: Achieving deep insertions, as well as good speech perception results, the FLEXsoft electrode array allows for some preservation in subjects with measurable low frequency hearing, even after a period of time. This opens the door for future research in electrode design, hearing preservation research and drug delivery systems. Objectives: The FLEXsoft electrode is designed to be atraumatic to the structures of the cochlea during deep insertion of a cochlear implant electrode. This paper reports on the surgical and functional outcomes in implantations with the FLEXsoft electrode array. Patients and methods: Twenty-three adult subjects received a FLEXsoft electrode array and were assessed on speech perception tests (monosyllables, sentences in quiet and in noise), a subjective questionnaire (Nijmegen Cochlear Implant Questionnaire) and a pure-tone audiogram.

Abstract:

There are a variety of factors which can influence cochlear implantation outcome. Channel interaction is one of the variables responsible for audiological performance deterioration in multichannel implants. Electrode design is - among others - one way to decrease the incidence of channel interaction. At present, electrodes differ in overall length, diameter, contact design and distribution, but none of the electrodes available have a distinct variability in the amount of space between contacts across the length of the electrode. The aim of this study was to investigate whether a new electrode design featuring larger contact spacing in the apical part of deeply inserted electrodes would lead to an increase in speech perception. Eighteen postlingually deafened patients fitted with MED-EL COMBI 40+ or MED-EL Pulsar cochlear implants using the MED-EL implementation of continuous interleaved sampling participated in this study. Patients were tested in 6 conditions, in which the channel spacing and distribution of electrode contacts in each patient were artificially varied by activating or deactivating different channels. Performance was tested immediately after each change in setup with a monosyllable and sentence test (Hochmaier, Schultz and Moser). Our results showed that the condition with the highest distance between contacts in the apical part (up to 6.4 mm instead of 2.4 mm) is the most effective for the matched map condition: the results improved statistically significantly for the sentence test from 72% in the standard 12-channel condition to 83.2% and from 40.8 to 50% for the monosyllable test. Based on these findings, we present a new electrode design which can help achieve further increases in speech perception with cochlear implants.

Abstract:

The aim of this study was to relate the pitch of high-rate electrical stimulation delivered to individual cochlear implant electrodes to electrode insertion depth and insertion angle. The patient (CH1) was able to provide pitch matches between electric and acoustic stimulation because he had auditory thresholds in his nonimplanted ear ranging between 30 and 60 dB HL over the range, 250 Hz to 8 kHz. Electrode depth and insertion angle were measured from high-resolution computed tomography (CT) scans of the patient's temporal bones. The scans were used to create a 3D image volume reconstruction of the cochlea, which allowed visualization of electrode position within the scala. The method of limits was used to establish pitch matches between acoustic pure tones and electric stimulation (a 1,652-pps, unmodulated, pulse train). The pitch matching data demonstrated that, for insertion angles of greater than 450 degrees or greater than approximately 20 mm insertion depth, pitch saturated at approximately 420 Hz. From 20 to 15 mm insertion depth pitch estimates were about one-half octave lower than the Greenwood function. From 13 to 3 mm insertion depth the pitch estimates were approximately one octave lower than the Greenwood function. The pitch match for an electrode only 3.4 mm into the cochlea was 3,447 Hz. These data are consistent with other reports, e.g., Boëx et al. (2006), of a frequency-to-place map for the electrically stimulated cochlea in which perceived pitches for stimulation on individual electrodes are significantly lower than those predicted by the Greenwood function for stimulation at the level of the hair cell.

Abstract:

PURPOSE: 1) To report the case of a 70-year-old patient with a history of auditory deprivation for 80% of his life and who received bilateral cochlear implants and 2) to discuss different aspects of the case, including duration of auditory deprivation, the decision for bilateral implantation, age at implantation, and the use of this treatment
A two-stages bilateral cochlear implantation was performed in a 70-year-old patient with long-term deafness without operative or post-operative problems with excellent functional result. DISCUSSION: Various studies have reported that in patients with long-term auditory deprivation, the results of cochlear implants are delayed and sometimes unsatisfactory when compared to patients with more recent post-lingual deafness. However, they did not contraindicate the surgery. The positive results with the first implant (both for tinnitus and hearing loss) motivated the patient and medical team to proceed to bilateral implantation. CONCLUSION: Patients with longstanding auditory deprivation can achieve good functional results even though at a slower rate. The use of bilateral cochlear implants accelerates and optimizes the final outcome.

Abstract:
Cochlear implantation is an accepted treatment method for adults and children with severe to profound hearing loss. Confidence in technology has led to changes in individuals who can receive a cochlear implant and changes in expected benefit with a cochlear implant. This article describes the research and development activities at MED-EL, which make possible the implementation of new speech-coding strategies as well as the application of acoustic and electric stimulation via a combined speech processor in MED-EL devices. Research on benefits from bilateral cochlear implantation and electric-acoustic stimulation are also reviewed. Finally, the potential of drug delivery systems is considered as a way to improve cochlear implant outcomes, and results from preliminary evaluations of a hybrid cochlear implant system with drug delivery capabilities are reported.

Article in Mandarin.

Abstract:
Objective: To discuss the different methods of computed topography (CT) scans and three dimensional reconstruction of inner ear with implanted electrodes, and to evaluate the value and image features of these methods. Method: Six cochlear implant recipients (MED-EL COMBI 40+, Advanced Bionics) recipients were involved in this study. The implanted electrodes of all patients were examined on the seventh postoperative day. The data of the CT scans were transferred to workstation for three-dimensional reconstruction by volume rendering (VR), average intensity projection (AIP) and surface shaded display (SSD). Results: The three methods of three dimension reconstruction provided satisfactory image of implanted electrode including the shape and the special relationship of the electrode in the inner ear. The insertion depth of the electrode can be evaluated directly. Moreover, each of the electrode pairs can be identified clearly. Conclusion: Postoperative evaluation of the implanted electrode with three methods of CT scans with three dimensional reconstruction of the inner ear provide more accurate image of the spatial relationship of the electrode in the cochlear canal with direct demonstration of electrode insertion depth in the cochlea.

Abstract:
CONCLUSION: Telephone usage is a difficult challenge for cochlear implanted patients. A significant number of cochlear implanted patients are able to carry on a land-line or mobile telephone conversation. The telephone model may be a critical factor for telephone performance. OBJECTIVES: The goals of this study were to evaluate speech discrimination through land-line and mobile telephones in Combi40+ users, and to compare different mobile telephone models to find out which could be more advisable for them. PATIENTS AND METHODS: Eighteen Combi40+ implantees were tested with CID sentences and bisyllabic words presented through land-line and mobile telephones, in both quiet and noisy environments. RESULTS: Mean scores for telephonic speech discrimination were over 85% for CID sentences and 28-59% for bisyllabic words. The Siemens M55 was superior to the other mobile telephones tested.
Abstract:

OBJECTIVE: The purpose of the current investigation was to compare speech recognition in noise for bilateral and unilateral modes within postlingually deafened, adult bilateral cochlear implant recipients. In addition, it was of interest to evaluate the time course of the bilateral speech-recognition advantage and the effect of changing signal-to-noise ratio (SNR) on the magnitude of the bilateral advantage. DESIGN: In the first experiment, 16 postlingually deafened adults who were bilaterally implanted with the MED-EL C40+ cochlear device were evaluated in unilateral left, unilateral right, and bilateral conditions 4 to 7 mo after activation. Speech recognition in the presence of five spatially separated, uncorrelated noise sources was evaluated using both a single fixed SNR of +10 dB and an adaptive-SNR method. In a follow-up study, a subset of 10 participants was re-evaluated using an identical fixed-SNR method 12 to 17 mo after activation to examine the time course of speech-recognition performance in both unilateral and bilateral modes at a single SNR. A third study was performed with a subset of six participants to examine performance over a range of SNRs. In this study, speech recognition was measured 12 to 17 mo after activation in quiet and at +5, +10, +15, and +20 dB SNRs using the same five uncorrelated noise sources. RESULTS: The speech-recognition data revealed a significant bilateral advantage of 3.3 dB using the adaptive-SNR method. A significant bilateral advantage of 9% was also measured using a fixed +10 dB SNR. Results from the second study revealed that experience resulted in a significant (11 to 20%) increase in speech-recognition-in-noise performance for both unilateral and bilateral modes; however, the magnitude of the bilateral advantage was not affected by experience. Results from the third study revealed the largest bilateral advantage at the poorest SNR evaluated. In addition, performance in quiet was significantly better than that measured in the presence of noise, even at the +20 dB SNR. CONCLUSIONS: The results of these experiments support a small but significant bilateral speech-recognition-in-noise advantage for cochlear implant recipients in an environment with multiple noise sources. This advantage is presumed to be attributable to the combined effects of binaural squelch and diotic summation. Although experience generally improved speech-recognition-in-noise performance in both unilateral and bilateral modes, a consistent bilateral advantage (approximately 10%) was measured at 4 to 7 mo and at 12 to 17 mo postactivation.

Abstract:

OBJECTIVE: Taking advantage of the flexibility in the number of stimulating electrodes and the stimulation rate in a modern cochlear implant, the present study evaluated relative contributions of spectral and temporal cues to cochlear implant speech perception. DESIGN: Four experiments were conducted by using a Research Interface Box in five MED-EL COMBI 40+ cochlear implant users. Experiment 1 varied the number of electrodes from four to twelve or the maximal number of available active electrodes while keeping a constant stimulation rate at 1000 Hz per electrode. Experiment 2 varied the stimulation rate from 1000 to 4000 Hz per electrode on four pairs of fixed electrodes. Experiment 3 covaried the number of stimulating electrodes and the stimulation rate to study the trade-off between spectral and temporal cues. Experiment 4 studied the effects of envelope extraction on speech perception and listening preference, including half-wave rectification, full-wave rectification, and the Hilbert transform. Vowels, consonants, and HINT sentences in quiet, as well as with a competing female voice served as test materials. RESULTS: Experiment 1 found significant improvement in all speech tests with a higher number of stimulating electrodes. Experiment 2 found a significant advantage of the high stimulation rate only on consonant recognition and sentence recognition in noise. Experiment 3 found an almost linear trade-off between the number of stimulation electrodes and the stimulation rate for consonant and sentence recognition in quiet, but not for vowel and sentence recognition in noise. Experiment 4 found significantly better performance with the Hilbert transform and the full-wave rectification than the half-wave rectification. In addition, envelope extraction with the Hilbert transform produced the highest rating on subjective judgment of sound quality. CONCLUSIONS: Consistent with previous studies, the present result from the five MED-EL subjects showed that (1) the temporal envelope cues from a limited number of channels are sufficient to support high levels of phoneme and sentence recognition in quiet but not for speech recognition in a competing voice, (2) consonant recognition relies more on temporal cues while vowel recognition relies more on spectral cues, (3) spectral and temporal cues can be traded to some degree to produce similar performance in cochlear implant speech recognition, and (4) the Hilbert envelope improves both speech intelligibility and quality in cochlear implants.

Abstract:
Continual changes in cochlear implant technology have resulted in the development of superior implants which improve quality of life of users. We present the case of a taxi driver who has been in our cochlear implant programme since 1991 and has required reimplantation. We discuss the benefits of the new implant on his life and work. A novel technique to successfully reimplant the ipsilateral cochlea is highlighted.

Abstract:
This study evaluated the use of landline and mobile phones in an international sample of cochlear implant users. A custom-designed survey was mailed to cochlear implant users from four different countries. A link to the survey was posted on the MED-EL website, with responses from a further six countries. Results from 196 surveys show that there is a significant shift from pre-operative non-use of a telephone to use of a telephone post-operatively. Seventy-one percent of MED-EL cochlear implant users are able to use a landline telephone to some extent and 54% are able to use a mobile phone to some extent. Talking to familiar speakers about familiar topics is the easiest listening condition on the telephone, and it is easier to recognize a voice using the landline. Most respondents found it difficult to make a call without some assistance. Most respondents could manage to call someone in an emergency, even on a mobile phone. Data obtained should provide useful information in the counselling and rehabilitation of cochlear implant recipients and candidates.

Abstract:
CONCLUSION: Partial deafness cochlear implantation (PDCI) is a feasible means of treating individuals who have good low frequency hearing, but a severe to profound hearing loss in the mid to high frequencies. The individuals have benefit in noise and show significant benefit in a number of difficult listening conditions, when compared with their acoustic-only hearing prior to implantation. This benefit is maintained over time. OBJECTIVES: PDCI using the round window surgical technique is one means of treating individuals with a ‘ski-slope’ hearing loss, who gain minimal benefit from amplification with conventional hearing instruments. This paper aims to demonstrate the benefit that PDCI provides these individuals. PATIENTS AND METHODS: Ten subjects received a partial insertion of a standard MED-EL electrode, using the round window approach. Pure tone audiometry and monosyllable testing in quiet and noise were conducted preoperatively, at implant fitting and then at 1, 3, 6 and 12 months after initial device fitting. The APHAB questionnaire was completed by subjects preoperatively and then at 6 and 12 months after receiving their cochlear implant. RESULTS: Hearing was preserved in 9 of 10 cases. One subject uses a hearing aid to amplify low frequency hearing, the remainder use natural low frequency hearing. Improvements in monosyllabic scores over time in both quiet and noise were significant, particularly within the first 3 months of PDCI use.

Abstract:
OBJECTIVES: The principal task in the programming of a cochlear implant (CI) speech processor is the setting of the electrical dynamic range (output) for each electrode, to ensure that a comfortable loudness percept is obtained for a range of input levels. This typically involves separate psychophysical measurement of electrical threshold (theta e) and upper tolerance levels using short current bursts generated by the fitting software. Anecdotal clinical experience and some experimental studies suggest that the measurement of thetas is relatively unimportant and that the setting of upper tolerance limits is more critical for processor programming. The present study aims to test this hypothesis and examines in detail how acoustic thresholds and speech recognition are affected by setting of the lower limit of the output ("Programming threshold" or "PT") to understand better the influence of this parameter and how it interacts with certain other programming parameters. DESIGN: Test programs (maps) were generated with PT set to artificially high and low values and tested on users of the MED-EL COMBI 40+ CI system. Acoustic thresholds and speech recognition scores (sentence tests) were measured for each of the test maps. Acoustic thresholds were also measured using maps with a range of output compression functions ("maplaws"). In addition,
subjective reports were recorded regarding the presence of “background threshold stimulation” which is occasionally reported by CI users if PT is set to relatively high values when using the CIS strategy. RESULTS:: Manipulation of PT was found to have very little effect. Setting PT to minimum produced a mean 5 dB (S.D. = 6.25) increase in acoustic thresholds, relative to thresholds with PT set normally, and had no statistically significant effect on speech recognition scores on a sentence test. On the other hand, maplaw setting was found to have a significant effect on acoustic thresholds (raised as maplaw is made more linear), which provides some theoretical explanation as to why PT has little effect when using the default maplaw of c = 500. Subjective reports of background threshold stimulation showed that most users could perceive a relatively loud auditory percept, in the absence of microphone input, when PT was set to double the behaviorally measured electrical thresholds (thetae), but that this produced little intrusion when microphone input was present. CONCLUSIONS:: The results of these investigations have direct clinical relevance, showing that setting of PT is indeed relatively unimportant in terms of speech discrimination, but that it is worth ensuring that PT is not set excessively high, as this can produce distracting background stimulation. Indeed, it may even be set to minimum values without deleterious effect.

Abstract:

BACKGROUND:: In subjects with remaining low frequency hearing, combined electric-acoustic stimulation (EAS) of the auditory system is a new therapeutic perspective. Intracochlear introduction of a cochlear implant electrode, however, may alter the biomechanical properties of the inner ear and thus affect perception of acoustic stimuli.

STUDY DESIGN:: Based on histological observations of morphologic changes after cochlear implantation in cadaveric and post mortem studies the effects of basilar membrane (BM) stiffening in the ascending basal and middle turns of the cochlea due to close contact of the BM with the electrode were simulated in a 3D-computational finite element model of the inner ear. To verify our simulated results, pre- and postoperative pure-tone audiograms of 13 subjects with substantial residual hearing, who underwent cochlear implantation, were evaluated. RESULTS:: In the scenario of partial BM-fixation, acoustic energy of middle (2kHz) and high (6kHz) frequency was focused basally and apically to the fixed section, increasing BM displacement amplitudes up to 6dB at a stimulation level of 94dB (SPL). Lower frequencies were not affected by fixation in the basal and middle turn of the cochlea. In implanted subjects, a small but significant decrease of thresholds was observed at 1.5kHz, a place in tonotopy adjacent to the tip region of the implanted electrode. CONCLUSION:: Our model suggests that stiffening of the basilar membrane adjacent to an implanted electrode into the basal and middle cochlear turn did not affect BM movement in the low frequency area. Focussing of acoustic energy may increase perception in regions adjacent to the fixed section. Observations in implanted subjects were concordant with our model predictions. High frequencies, however, should not be amplified in patients using EAS to avoid disturbances in discrimination due to tonotopically incorrect frequency representation.

Abstract:

Conclusion: Deeply inserted electrodes offer the possibility that apical stimulation may improve speech performances. Therefore, deep insertion is reasonable and should be performed in patients with profound or total hearing loss. Objectives: To evaluate the importance of insertion depth beyond 25 mm in a group of cochlear implant patients with deeply inserted electrodes up to 32 mm. Patients and methods. In the first part of the study patients were asked to perform a pitch estimation for channels across the whole length of the electrode array. We evaluated whether pitch discrimination was possible along the whole cochlea and especially in its apical part. Then, the audiological performances of 10 patients were tested in 5 conditions, in which we artificially varied the insertion depth in each patient by activating and deactivating channels. The patients were tested immediately in the new condition to avoid adaptation. Results: The results showed that activating the electrodes in the uppermost region of the cochlea improves speech perception significantly. Furthermore it could be demonstrated that the pitch perceived in the cochlea with electrical stimulation decreases with increasing insertion depth along the whole length of deeply inserted electrode arrays.

Abstract:
Patients with a large vestibular aqueduct (LVA) suffer from a loss of hearing in childhood at an early onset. An acute loss of hearing can be precipitated by minor head trauma. Until now there seems to be no sufficient therapy for stopping the progression of a loss of hearing. It has been shown that a cochlear implantation is a worthwhile procedure if the patient is almost deaf. We report the case of a patient with a bilateral LVA. A loss of hearing was confirmed at the age of 16 months. Exposure to loud noise triggered an acute progression of the hearing loss. At the age of 18 years, LVA was confirmed radiologically, revealing an enlarged endolymphatic duct and sac in MRI scans and an enlarged vestibular aqueduct in the CT scan. We successfully performed a cochlear implant (MED-EL, COMBI 40+ flex). Proceeding from this case report, the paper reviews the literature on LVA.

Abstract:

Purpose: It is hypothesised that a mesh reconstruction plate designed to fit a cochlear implant (CI) internal device will provide immediate structural support to the side of the implant and that this strength far exceeds the forces induced by a 1.5-tesla MRI. Procedures: Human cavarial specimens were drilled and plated with reconstruction mesh. Force was applied until failure was reached. Results: Mean maximum force, mean force to first failure and mean displacement measures for group 1 (resorbable mesh, n=10) were 302.9N, 283.0N and 3.05mm, respectively. The mean maximum force for group 2 (0.4-mm titanium mesh, n=10) and group 3 (0.6-mm titanium mesh, n=8), were 121.3 and 234.0N, respectively. Mean force of first failure was 92.0N for group 2 and 164.8N for group 3. Conclusions: The force required for failure of the mesh is significantly greater than the 0.17N exerted on a CI magnet by a 1.5-tesla MRI scan.

Abstract:

Objective: To devise a safe and effective method of optimal customised electrode placement in the common cavity of children with cochleovestibular malformations. Methods: Specialized electrodes were manufactured on the basis of three-dimensional data obtained from the high resolution computed tomography (HRCT) scans of the temporal bone of these two children. The electrode positioning was achieved with direct endoscopic view of the cavity utilising a three-hole common cavity technique. Results: Optimal electrode positioning in apposition to the medial neuroepithelium on the common cavity was verified visually intraoperatively. Postoperatively, minimal stable electrical current levels were found to be required. Conclusions: Custom-designed electrodes have the potential to offer improved results in children with common cavity malformations. Intraoperative direct positioning may further improve these results.

Abstract:

Objective: To highlight a case of cochlear implantation in the setting of ipsilateral petrous apex chondrosarcoma. Background: A patient with bilateral progressive hearing loss was incidentally found to have a destructive right petrous apex lesion on computed tomography before cochlear implantation. The patient had no associated symptoms and a magnetic resonance imaging scan was obtained, narrowing the differential diagnosis. A middle cranial fossa approach was performed for synchronous biopsy of the lesion and cochlear implantation. Results: Frozen sections revealed a low-grade chondroid lesion, and a MED-EL COMBI 40+ cochlear implant with a split electrode array was inserted via the middle fossa. Final pathologic examination revealed a Grade I chondrosarcoma. The patient suffered no complications postoperatively and was followed-up over 5 years with serial computed tomographic scans and clinical examinations. No additional treatment was administered. Eighteen months postoperatively, the patient experienced episodic vertigo. There were no new findings on computed tomography, and the vertigo improved with a low-salt diet. Otherwise, the patient had excellent hearing results, and the lesion has not progressed under observation. Conclusion: The implications of observing low-grade chondrosarcomas in well-selected patients and the unique aspect of cochlear implantation on the affected side are discussed.

Abstract:
The purpose of this investigation was to determine the impact of commonly recommended cochlear implant (CI) speech processor placements on microphone output both with and without single-channel front-end compression. The impact of this compression use on interaural level difference (ILD) magnitude was also evaluated for the ear-level position. Finally, pilot localisation data collected with and without single-channel, front-end compression was collected on seven bilateral cochlear implant recipients. The results revealed that differences in signal audibility due to clinical placement of CI speech processors in ear, shoulder, and collar positions can at least partially be offset through the use of front-end compression. These data also revealed that compression impacted ILD cues. Preliminary data indicated that some bilaterally implanted subjects were able to take advantage of the enhanced ILD cues when compression was turned off, while other bilaterally implanted subjects did not localise better in the compression-off condition.

Abstract:
This study assessed the subjective benefits of cochlear implants in senior patients wearing a MED-EL device. Data was compared with previous studies to assess the influence of recent speech-coding strategies and behind-the-ear speech processors; users of the behind-the-ear device and the bodyworn device were also compared. An adaptation of the Nucleus 22-channel survey was sent to 141 cochlear implant users. The survey assesses perception of the device, communication benefits, handling the device and quality of life. Ninety-five surveys were returned. Results demonstrate that advanced technology provides greater benefit now than 9–13 years ago, notably: improved listening across noise, better understanding on the telephone and better speech perception. Users of the behind-the-ear device did not report more difficulties than body-worn device users but demonstrated better performance. Results show a positive outcome for cochlear implantation in a MED-EL seniors group.

Abstract:
Most cochlear implant studies are focused on improvement of speech perception associated with implantation. The goal of this study was to assess the impact of cochlear implantation on quality of life changes in Spanish users. Thirty postlingually deaf patients fitted with a cochlear implant completed the Glasgow Benefit Inventory, a questionnaire dealing with communication abilities, and open-ended questionnaire. The Glasgow Benefit Inventory revealed a positive effect in 93% of patients. The use of a cochlear implant significantly enhanced discrimination ability, telephone use and self-confidence. A high degree of satisfaction was achieved in all situations except with background noise. Ninety-six percent of patients would recommend the operation to a friend. A dramatic improvement in quality of life following cochlear implantation is revealed by a great majority of patients. Results cannot only be explained by enhancement to auditory perception.

Article written in Spanish.

Abstract:
Several articles show the audiologic benefits of cochlear implants, although it is still necessary to prove their impact on quality of life. In this study, 36 Med-El processor users were included. The Glasgow Benefit Inventory (GBI) was used to measure changes in quality of life, and another questionnaire was used to evaluate the communication abilities. Eighty-six percent of the patients answered our questionnaire. The quality of life improved significantly according to the specific questionnaire. The average total benefit obtained with the GBI was +41, and the average scores related to general, social and physics benefits were +57, +16, and +3, respectively.
No significant difference was found between quality of life and other parameters like insertion depth of the array, etiology or duration of the deafness.

Article written in Spanish

Abstract:

OBJECTIVE: To assess speech discrimination through line and mobile telephone in cochlear implanted patients.
MATERIAL AND METHODS: Eighteen patients implanted with a Combi 40+ went through different speech discrimination tests with a line telephone and three mobile telephones, in quiet and noisy environment. RESULTS: Mean scores for telephonic speech discrimination were 84-92% using CID sentences, 27-58% using bisyllabic words in quiet environment and 15-41% using bisyllabic words in noisy environment. Among the mobile telephones tested, the Siemens M55 reached the best scores. CONCLUSIONS: Telephonic speech discrimination is achieved by a significant number of cochlear implanted patients. Certain mobile telephone models appear to be more advisable for these patients.

Abstract:

The present study was designed to follow changes in electrical stimulation levels and electrode impedance values (EIV) in children using the Med-El Combi 40+ cochlear implant (CI) during the first 12 months of implant use. The maps of 24 prelingually deaf children implanted at a mean age of 5.9 years (range 1-15.9 years) using the TEMPO+ speech processor programmed with CIS+ strategy were examined at five time points: initial stimulation, and 1, 3, 6, and 12 months post-initial stimulation. Most comfortable levels (M) and electrode impedance values (EIV) were analyzed according to three cochlear segments: apical, medial, and basal. Results indicated a significant increase in M levels until the 3-month time point, thereafter stabilization was evident. Furthermore, M levels in the apical segment were lower than those in the medial and basal segments. EIV decreased from initial stimulation to the 3-month time point and was then stable through the study follow up. Interestingly, the finding of higher EIV in the apical segment may be attributed to the physical characteristics of the Med-El electrode. In conclusion, the pattern of stabilization of M levels found in the present study is similar to that reported for children using other devices. The data presented here may be useful as a guideline for programming M levels and monitoring EIV in infants and young children. They may further help clinicians to identify those children that fall outside the 'typical' range.

Article in German.

Abstract:

Cochlear implants have become a standard treatment modality for sensorineural hearing loss. In this review article, assembly and function a cochlear implant are described. Cochlear implants replace the normal inner ear by transforming acoustic sound signals into electric stimuli and deliver these to the auditory nerve. Speech processors translate the acoustic signal of the microphone into one that fits electrostimulation of the auditory system. In multiple steps, the signal has to be analysed and processed to fit the demands of electrical stimulation. The speech processor then sends commands and the energy for stimulation to the implanted aprts via a transcutaneous high frequency radio link. The implant refers the information as electrical stimuli to each electrode contact.

No abstract.

Abstract:
Objectives/hypothesis: To describe indications for, the surgical technique required, and the expected functional results of split electrode array cochlear implants. Study design: retrospective chart review. Methods: Data collected included aetiology of deafness, radiographic findings, pre- and postoperative aided pure tone thresholds, and speech perception testing. Adult speech perception outcomes were measured using the Consonant Nucleus Consonant (CNC) monosyllable words and Hearing in Noise Test (HINT) in quiet/noise (+10dB). The children were assessed using the Infants and Toddlers Meaningful Auditory Integration Scale. Results: Five patients were implanted with a split electrode array. This included two adults and three children. Both adults had pre-operative binaural aided pure tone averages worse than 50dB and scores of 0% in both Hint quiet and CNC words. The children had undetectable pre-operative aided thresholds and scored an average 4/40 on the IT-MAIS. Post implant, the average threshold gain was 38.5dB in the adults and 81.5dB in the children. One adult improved to score 51%/22% on HINT quiet/noise at 6 months and 72%/30% at 12 months. The other adult continued to score 0% on HINT at 12 months but claimed substantial subjective auditory improvement after the first year of device use. The children averaged 28/40 on the IT-MAIS at 6 months after implantation. Forty-two of 48 implanted electrodes were functional. Conclusions: The split electrode array is a very useful alternative to traditional cochlear implants in treating deafened patients with cochlear ossification. Patients implanted with the split array showed a marked improvement in sound and speech perception.

Abstract:
Individuals with useful hearing in the lower frequencies (less than 1000 cycles per second) but with severe to profound losses in the higher frequencies often have poor speed discrimination scores, especially in noise. Conventional hearing aids only provide marginal increases in word discrimination for this class of individuals. Consequently, interest has developed in electrically stimulating those regions of the cochlear (apical) that subserve higher frequencies while permitting the individual to continue to hear (with or without a hearing aid) lower frequency sound acoustically. To successfully implement such a strategy, residual hearing must be maintained for lower frequency sounds. Technical alterations in the operative technique of cochlear implantation designed to preserve hearing include: (1) avoidance of acoustic trauma using low speed drills; (2) careful placement of the cochleostomy anterior and inferior to the round window membrane to avoid damage to the basilar membrane and ossea spiral lamina; (3) the use of steroids to protect against injury to the Organ of Corti at the cellular level; (4) the use of shorter, thinner, atraumatic electrodes; and (5) a small cochleostomy to prevent buckling of the electrode and escape of perilymph.

Abstract:
Objective/Hypothesis: Cochlear implantation is currently the treatment of choice for severe to profound sensorineural hearing loss. The MED-EL COMBI 40+ (Innsbruck, Austria) cochlear implant system was approved for use in the United States in 2001. This device employs a 31-mm-long electrode array, ceramic case, and continuous interleaved sampling with Hilbert transformation for envelope extraction. A single institution's experience with the COMBI 40+ implant in adult patients was reviewed. Study design: Retrospective chart review. Methods: Medical-surgical and audiological data were collected from 112 patients who received a MED-EL COMBI 40+ cochlear implant between December 1998 and April 2004. Results: The rate of surgical complications and speech perception testing results compared favourably with those of other cochlear implant systems. For postlingually deafened adults, mean CNC word, HINTQ, CUNY, and HINT + 10 dB signal-to-noise ratio scores after 1 year of implant usage were 54%, 87%, 96%, and 64%, respectively. Prelingually deafened adults also derived significant benefit, but plateau performance for these patients was well below that for patients with later onset of deafness and significant variability was seen in this group. Repeat implantation for suspected device malfunction was undertaken in seven cases (6% of devices) (mean duration of use, 28 +/- 12 mo) with ultimate
resolution of the presenting problem. Conclusion: The study results support the safety and efficacy of cochlear implantation with the MED-EL COMBI 40+ cochlear implant system.

Abstract:
Changes in selection criteria have meant that children are being provided with cochlear implants (CI) at increasingly younger ages. However, there is a paucity of measures are appropriate for testing complex listening skills - most tests are too cognitively complex for such young children. The Common Objects Token (COT) Test was developed as a complex closed set test for children with profound hearing losses. This test was assessed for its usefulness in assessing children with cochlear implants. The test was administered to 20 implanted children over a period of two months. Results indicated that some subtests were equal and there was not a hierarchical subtest order. Based on these findings, the test was modified and then re-assessed on 85 children. Outcomes showed that all subtests assessed the same construct. Two subtests were able to predict the total score of the COT test. The test was modified to include two levels, one with easier tests suitable for younger children, and a shorter, quicker version for instances where there may be attention span or time constraints. Outcomes showed that the test may be suitable for children aged 3 and above and that children with less than 2 years of CI experience are able to perform on the test. The results of this testing indicated that the COT test is a useful addition to the test battery for assessing young implanted children.

Article in German.

Abstract:
Background: Speech audiometry plays an important role for hearing evaluation in children. Hearing impaired children, such as those with cochlear implant (CI) who frequently undergo testing, learn the test words by heart. Furthermore, the standard tests use words of former time. Patients and methods: Using the most frequently words of modern children's literature a speech assessment test was developed for children between 1 to 8 years. The material was first evaluated on normal hearing children. In a second step the phoneme and word perception scores of 35 CI children were measured using 60 - 100 dB SPL according to the most comfortable level (MCL) in free sound field. Results: The performance-intensity function for the single words were highly comparable with those of the Freiburger or Gottinger speech perception test. The average speech reception threshold in CI children was 44 % (test I), 36 % (test II), 63 % (test III) and 69 % (test IV), respectively. Compared to the Mainzer and Gottinger speech perception test the new words were more difficult to understand than those of the known tests. However, a statistically significant difference could be noted only for test II. Conclusions: The new developed "Wurzburger speech perception test" appears to be a useful additional tool for the evaluation of hearing impaired children in addition to the standard test procedures.

Article in German.

Abstract:
Background: The aim of the present paper is to evaluate the clinical parameters in patients implanted for combined, ipsilateral electric-acoustic stimulation of the auditory system. Methods: A total of 18 patients with residual deep frequency hearing were implanted with a COMBI 40+ cochlear implant (MED-EL, Austria). Insertion depths ranged from 18 to 22 mm (360 degrees). A modified surgical technique should contribute to hearing preservation in low frequency regions of the cochlea. Pure-tone audiometric thresholds were measured pre- and postoperatively. A speech audiometric evaluation was performed on two subjects. Results: Utilizing adapted surgical procedures, the preservation of low frequency hearing was accomplished in 16 of 18 subjects (88.9%). Seven (38.9%) patients had complete and nine (50.0%) partial preservation of residual hearing. The speech discrimination scores of two patients documented an increase in sentence intelligibility when compared with only the cochlear implant. Conclusions: Hearing preservation in cochlear implant surgery is possible. Insertions of 360
degrees provide a full functioning cochlear implant to stimulate sufficient neural structures for above average discrimination scores with the implant alone. A synergistic effect of the electric and the acoustic stimulation modes leads to high discrimination scores in background noise.

Abstract:

Objectives: Placement of cochlear implant electrodes into the scala vestibuli may be intentional, e.g. in case of blocked scala tympani or unintentional as a result of trauma to the basilar membrane or erroneous location of the cochleostomy. The aim of this study was to evaluate the morphological consequences and cochlear trauma after implantation of different cochlear implant electrode arrays in the scala vestibuli. DESIGN: Human temporal bone study with histological and radiological evaluation. SETTING: Twelve human cadaver temporal bones were implanted with different cochlear implant electrodes. Implanted bones were processed using a special method to section undecalcified bone. MAIN OUTCOME MEASURES: Cochlear trauma and intracochlear positions. RESULTS: All implanted electrodes were implanted into the scala vestibuli using a special approach that allows direct scala vestibuli insertions. Fractures of the osseous spiral lamina were evaluated in some bones in the basal cochlear regions. In most electrodes, delicate structures of the organ of Corti were left intact, however, Reissner's membrane was destroyed in all specimens and the electrode lay upon the tectorial membrane. In some bones the organ of Corti was destroyed. CONCLUSIONS: Scala vestibuli insertions did not cause severe trauma to osseous or neural structures, thus preserving the basis for electrostimulation of the cochlea. However, destruction of Reissner's membrane and impact on the Organ of Corti can be assumed to destroy residual hearing.

Abstract:

Objective: To evaluate changes in quality of life, anxiety, and depression after cochlear implantation in adults. Design: Twenty-seven postlingually deafened adults who had received a MED-EL COMBI40+ implant were investigated. One generic Health-Related deafness (PQLF) and the Index Relative Questionnaire Form (IRQF) completed by a near relative to the patient, in addition to a domain specific measure, the Hopkins Symptom Checklist 25 items (HSCL-25), were used in a prospective study. The subjects were investigated before surgery and 12 to 15 months after surgery. Results: The scores were significantly better after surgery in four of six categories of the PQLF. In the IRQF, where a family member of the cochlear implant recipient was studied, the scores were significantly better in four of five categories. There was a significant improvement in the HSCL-25 after surgery. In the SF-36, only one of eight scales showed significant improvement. Conclusions: Cochlear implants were associated with statistically significant improvements in quality of life in postlingually deafened adults. The improvements were largest in the categories concerning communication, feelings of being a burden, isolation, and relations to friends and family. There was a statistically significant reduction in degree of depression and anxiety. Reduction in anxiety and depression was associated with gain in quality of life.

Abstract

Conclusions: Subjects with cochlear ossification derived benefits in terms of speech performance similar to those of the nonossified group. It is thus hypothesized that the insertion of short electrode arrays should be considered an alternative choice for patients with cochlear ossification. Objective: Cochlear ossification has been recognized as a major obstacle to the full insertion of a multichannel cochlear implant electrode array. To alleviate the technical difficulty of placing a standard electrode array and the possibility of causing undesirable trauma to the cochlea, a newly designed electrode array with the same number of electrodes compressed into a shorter length has been made available. The aim of the present study was to examine the speech perception performance of patients implanted with the MED-EL C40+ SS compressed electrode array and to compare their results with those of matched groups implanted with the MED-EL C40+/standard electrode array. Material and methods: One pre-lingually and two post-lingually deaf subjects using short electrode arrays were matched with three groups of subjects using standard electrode arrays. The pre- and postoperative speech perception scores were evaluated. Results: All three subjects using compressed electrode arrays achieved speech perception scores comparable to
Speech perception ability depended on the age of implantation and preoperative rehabilitation.

Conclusion: Cochlear implantation in Mondini cases can be successful in speech production and perception. Speech perception ability depended on the age of implantation and preoperative rehabilitation.

Abstract:
For several years there has been interest in using objective measures to set channel-specific upper programming limits when programming the speech processor of cochlear implant users. The present study aims to add to previous reports by examining correlations between electrically evoked stapedius reflex threshold (ESRT) and a range of psychophysical loudness estimates in a group of 22 adult users of the MED-EL COMBI 40+ system. Thirteen of the 15 subjects (87%) had recordable stapedius reflexes. Psychophysical measures of threshold, maximum comfort level (MCL) and maximum acceptable loudness (MAL) were recorded. Results showed that mean ESRT was closest to the MCL using 500ms burst (‘MCL500’), with MCL50 (MCL using 50ms burst) and MAL500 some 2dB and MAL50 3dB higher. Correlations between ESRT and the behavioural loudness judgements were highest for MCL599 (R=0.69, p<0.001) and slightly less for MAL500. These results confirm the ease of measuring ESRT in a clinical setting and that a high level of confidence can be placed on the use of these measures for setting processor maps in the absence of behavioural data.

Article in German.

Abstract:
Background: There is an increasing need for an instrument, which allows to quickly and reliably assess the auditory behaviour of infants and toddlers. Scientific question and objective: The objective of this study was to develop and validate the LittlEARS Hearing Questionnaire*, a tool for assessing auditory behaviour in children up to 24 months of age. Methods: Questionnaire construction followed the principles of classical test theory. The psychometric properties of 45 questions on infant auditory behaviour were examined in a sample of 218 parents of normal hearing infants up to age 24 months. Parental responses also served for computing normative values of the development of early auditory behaviour by regression analysis. Results: The final questionnaire contains 35 items, to be answered with either “yes” or “no”. The sum of “yes”-answers yields an overall score, which can be compared to age-related normative values in order to appraise the age-appropriateness of the infant’s auditory behaviour. The following scale characteristics have been found with the above sample: internal consistency: Cronbach’s Alpha = 0.96; reliability: split-half r=0.88; predictive accuracy: Guttman’s Lambda 0 0.96; correlation between overall score and age of the children: r=0.91. Conclusion: The “LittlEARS Hearing Questionnaire” is suitable for the quick assessment of a little child’s hearing behaviour, e.g. at physical examinations, at the postnatal hearing screening, or when evaluating rehabilitative measures.

Abstract:
Objective: This study was to evaluate the result of cochlear implantation in Thai paediatric patients from 1999-2003. Design: A prospective, open-labelled study. Setting: University teaching hospital. Material and method: Long term surgical and audiological results comparison after cochlear implantation in 2 cases with Mondini anomaly, 7 normal cochlea cases and a case of post meningitis post lingual child. Main outcome measures: Speech perception tests battery. Results: Among 10 children, 8 were implanted with Nucleus 22/24; the other two were implanted with MED-EL device system. The pre-operated cochlea in 2 cases showed Mondini deformity; both had gushers during the operation with a good outcome. The other 8 cases had normal cochlea although one was deaf from bacterial meningitis. There were 3 re-implantations. Speech production and perception was improved faster in the two children implanted with MED-EL than those implanted with Nucleus devices. Conclusion: Cochlear implantation in Mondini cases can be successful in speech production and perception. Speech perception ability depended on the age of implantation and preoperative rehabilitation.

Abstract:
Objective: The aim of this study was to assess the effects of variations in the settings for minimum stimulation levels on speech understanding for adult cochlear implant recipients using the MED-EL TEMPO+ speech processor. Design: Fifteen patients served as listeners. The test material included sentences presented at a conversational level in noise (74dB SPL at +10dB signal-to-noise ratio), sentences presented at a soft level in a quiet background (54dB SPL), consonants in “CV” environment (74dB SPL re: vowel peaks), and synthetic vowels in “bVt” environment (54dB SPL re: vowel peaks). The patients’ speech processors were programmed with minimum stimulation levels set to behavioral threshold, set to 10% of most comfortable loudness, and set to 0 muA. Results: The level of speech understanding achieved in the behavioral threshold condition was not significantly different from that achieved in either the 10% of most comfortable loudness or 0 muA conditions for any test material. Only 2 of the 15 patients demonstrated performance differences of greater than 10 percentage points between the 0 muA condition and the behavioral threshold condition on more than a single test. Conclusions: Our results demonstrate that there are no grievous consequences, in terms of speech understanding, for setting minimum stimulation levels below behavioral thresholds. The time savings from setting thresholds to 10% of MCL or 0 muA may be especially useful during the initial device fitting.

Abstract:
OBJECTIVE: The purpose of this study was to investigate sound localization in subjects bilaterally implanted with MED-EL COMBI 40/40+ cochlear implants. In addition, the sensitivity to interaural cues was assessed.
METHODS: In the localization test (11 subjects), CCITT noise (500 ms, original and HRTF-filtered, 70/75/80 dB sound pressure level) was presented from one of seven loudspeakers between -90 degrees and 90 degrees azimuth. The subject had to indicate which loudspeaker the noise was presented from. Sensitivity to interaural level differences (ILD) was assessed by performing localization tests (4 subjects) with the loudness of the two speech processors unbalanced to various degrees. To investigate the subjects’ sensitivity to interaural time differences (ITD), lateralization was measured (7 subjects) as a function of the time difference between two Gaussian-like pulses, each directed to one of the subject’s speech processor microphones by way of headphones. RESULTS: The judgments of all subjects significantly correlated with the positions of the loudspeakers. The scatter in the judged azimuth measured by the standard deviation of the responses was on average 27.5 degrees. Unbalanced loudness of the speech processors produced a bias in azimuth toward the speech processor with the louder volume setting. The mean rate of shift was 1.4 degrees per unit on the Wuerzburg loudness scale. Six of seven subjects showed a significant sensitivity to ITDs with the approximate time difference required for complete lateralization being 1.200ms on an average. The one subject not showing sensitivity to ITDs performed worst in the localization test. CONCLUSIONS: Bilateral cochlear implantation can restore spatial hearing in cochlear implant users. Both ILDs and ITDs are used by bilateral cochlear implant users in sound localization with ILDs appearing to be the dominant cue.

Abstract:
Combined electric and acoustic stimulation (EAS) of the auditory system is a new therapy for patients with severe to profound high- and mid-frequency hearing loss but remaining low-frequency hearing. In a prospective study, 13 patients with low-frequency hearing of better than 60 dB below 1 kHz were implanted with a MED-EL COMBI 40+ cochlear implant. Pure tone thresholds as well as monosyllabic word scores and Hochmair-Schulz-Moser sentences in quiet and in noise were measured with hearing aids, cochlear implant alone and in the combined stimulation mode (EAS) in the same ear. Hearing could be partially preserved in 11 out of the 13 patients. All patients scored significantly higher with cochlear implant alone than with hearing aids. Seven patients scored higher in the EAS mode than with cochlear implant alone for sentences in noise, 4 remained unchanged, and 2 could not use EAS. Synergistic effects of EAS were most prominent for hearing in noise with increases of up to 72% as compared to cochlear implant alone.

Abstract:

OBJECTIVES: To assess the sensitivity of two bilateral cochlear implant users to interaural level and time differences (ILDs and ITDs) for various signals presented through the auxiliary inputs of clinical sound processors that discard fine timing information and only preserve envelope cues. DESIGN: In a laterization discrimination experiment, the just noticeable difference (JND) for ILDs and envelope ITDs was measured by means of an adaptive 2-AFC method. Different stimuli were used, including click trains at varying repetition rates, a speech fragment, and noise bursts. For one cochlear implant listener and one stimulus, the sensitivity to envelope ITDs was also determined with the method of constant stimuli. The dependency of ILD-JNDS on the interaural place difference was studied with stimulation at single electrode pairs by using sinusoidal input signals in combination with appropriate single-channel processor fittings. In a laterization position experiment, subjects were required to use a visual pointer on a computer screen to indicate in-the-head positions for blocks of stimuli containing either ILD or ITD cues. All stimuli were loudness balanced (before applying ILD) and fed directly into the auxiliary inputs of the BTE processors (TEMPO+, MED-EL Corp.). The automatic gain control and the processors’ microphones were deactivated. RESULTS: Both cochlear implant listeners were highly sensitive to ILDs in all broadband stimuli used; JNDS approached those of normal-hearing listeners. Pitch-matched single electrode pairs showed significantly lower ILD-JNDS than pitch-mismatched electrode pairs. Envelope ITD-JNDS of cochlear implant listeners obtained with the adaptive method were substantially higher and showed a higher test-retest variability than waveform ITD-JNDS of normal-hearing control listeners and envelope ITD-JNDS of normal-hearing listeners reported in the literature for comparable signals. The envelope ITD-JNDS for the click trains were significantly lower than for the speech token or the noise bursts. The best envelope ITD-JND measured was ca. 250ms for the click train at 100 cycles per sec. Direct measurement of the psychometric function for envelope ITD by the method of constant stimuli showed discrimination above chance level down to 150 micros. The laterization position experiment showed that both ILDs and envelope ITDs can lead to monotonic changes in lateral percept. CONCLUSIONS: The two cochlear implant users tested showed strong effects of ILDs in various broadband stimuli with respect to JNDS as well as laterization position. The high dependency of ILD-JNDS on the interaural pitch difference suggests the potential importance of pitch-matched assignment of electrodes in the two ears by the speech processors. Envelope ITDs appear to be more ambiguous cues than ILDs, as reflected by the higher and more variable JNDS compared with normal-hearing listeners. The envelope ITD-JNDS of cochlear implant listeners depended on the stimulus.

Abstract:

Hypothesis: This study reports on the use of the double posterior labyrinthotomy surgical technique and a custom-designed electrode to ensure better positioning of stimulating electrodes within the common cavity and thus demonstrate suitable outcomes in patients. Background: Cochlear implantation has proven beneficial for numerous children with congenital malformations of the inner ear. Several studies show good auditory perception outcomes in children with common cavity. However, there have been risks involved with surgical techniques used in the actual implantation. These include possible aberrant facial nerve and the strong potential for a cerebrospinal fluid gusher. Improved surgical techniques and electrode design could allow for better electrode contact and avoid electrode placement in the internal auditory meatus. Method: The double posterior labyrinthotomy technique was carried out in three cases using a custom made MED-EL COMBI 40+ electrode. Results: Surgery was carried out with no complications and is no more technically demanding than other standard surgical approaches. The speech processor program remains stable over time, and auditory perception results are similar to those obtained from children with no cochlear abnormalities. Conclusion: These results demonstrate the success of the double posterior labyrinthotomy approach with modified cochlear implant, and this could be recommended as the procedure of choice in children presenting to an implant team with a common cavity.

Abstract:
The primary aim of the study was to determine the effect of altering channel stimulation rate on the performance of adult cochlear implant users. Six adult users of the MED-EL CIS processing strategy underwent tests of categorical identification of synthetic speech, tests of sentence recognition and tests of consonant recognition in three listening conditions: high channel stimulation rate (ranging from 1500 to 2020 pps/ch), a medium rate (800 pps/ch) and a low rate (400 pps/ch). Number of channels was held constant across rate conditions. With the categorical identification task, performance varied by acoustic cue type but did not vary with rate. With the consonant recognition task performance varied by phonological feature, but there was also no significant effect of rate. However, two subjects showed markedly reduced sentence scores at lower rates. Results suggest that higher stimulation rates with the CIS strategy may be beneficial to speech perception in some cases.

Abstract:
MED-EL launched the first ear-level speech processor offering a high-rate CIS+ strategy, the TEMPO+, in 1999. Studies have already demonstrated improved speech perception, sound quality and ability to enjoy music with the TEMPO+ due to the new CIS+ speech-coding strategy, when compared to the body-worn processor. In this study we evaluated responses from parents of young children about ease of handling and usage of the TEMPO+, and satisfaction with the TEMPO+ and its performance. Overall, 65 custom-designed questionnaires were analysed. The results showed that MED-EL cochlear implant users felt comfortable manipulating the dials and switches, changing the battery pack, using external sources of input and using the accessories provided. These results confirm the suitability of the TEMPO+ for infants and toddlers.

Abstract:
Ossification and cochlear malformations are no longer seen as a contra-indication to cochlear implantation. The MED-EL COMBI 40+ short electrode was designed specifically for cases where major ossification has occurred, or where full insertion of an electrode may not be possible due to abnormal structure of the cochlea. This study investigates outcomes of 18 children implanted with the short electrode array. These children were assessed using the EARS test battery pre-operatively and at a number of intervals thereafter. Results show a consistent improvement in time on most tests; these results appear to be independent of aetiology. Data from these children were compared to 18 matched pairs implanted with the standard COMBI 40+ electrode array. The short electrode children do not perform as well as the standard children initially, but do tend to catch-up at later test intervals. Results indicate the benefit of using a short electrode when complete insertion of the standard electrode is not viable.

Wilson BS, Sun X, Schatzter R, Wolford RD. Representation of fine structure or fine frequency information with cochlear implants, pp 3-6.

Muehloecker C, Bryde Nielsen S, Jaeger A. Using the Insertion Test Device for choosing the best suited cochlear implant electrode variant, pp 101-104.

Lorens A, Piotrowska A, Skarzynski H. Pitch perception and the number of electrodes vs. long-term development of speech perception ability in auditory brainstem implants, pp 429-432.

Abstract:

BACKGROUND: The objective of this study was to assess the intracochlear position and the extent of trauma to cochlear structures using the C40+ M electrode (MED-EL, Innsbruck, Austria), which was especially designed for the combined electric acoustic stimulation. METHODS: Five human temporal bones were implanted using a standard cochlear implant procedure featuring mastoidectomy, posterior tympanotomy, and promontory cochleostomy. For the cochleostomy, an inferior approach with preservation of the endosteum of the cochlea was used to contribute to hearing preservation in the in vivo condition. RESULTS: All insertions of the new electrode array were performed into the scala tympani of the cochlea. The average insertion depth was 288 degrees. Apically, 4 of the 5 implantations were completely atraumatic. One bone showed a rupture of the basilar membrane only at the tip of the electrode. However, 4 of the 5 arrays produced severe trauma to basal cochlear structures. Two pathomechanisms, the direct traumatization through drilling of the cochleostomy or the indirect traumatization via buckling of the array could be distinguished. CONCLUSIONS: Due to the reduced contact spacing and its flexible body, the C40+ M electrode is suitable for cochlear implantations with hearing preservation and combined electric and acoustic stimulation of the auditory system. Modifications of the surgical pathway to the cochlea should help to minimize the risk of basal cochlear trauma.

Abstract:

It is well recognised that multi-channel cochlear implants are highly effective in gaining or regaining auditory perceptual skills of severe to profound hearing-impaired people. Research shows that adults rapidly improve in speech understanding after cochlear implantation. This study reports on speech understanding from two Spanish Clinics. 32 post-lingually deafened adults were fitted with either a MED-EL COMBI 40 or COMBI 40+ cochlear implant at the Hospital Universitario San Cecilio, at the Granada or Hospital Universtario La Fe, Valencia Clinic, Spain. Subjects were assessed at 1, 3, 6 and 12 months post-fitting on a number of speech perception tests. Results showed a highly significant improvement on all speech perception tests over the time. These ratify other studies in saying that cochlear implantation is a viable and successful treatment in post-lingually deafened adults.

Abstract:

In multichannel cochlear implants, low frequency information is delivered to apical locations, while high frequency information is delivered to more basal locations, mimicking the normal acoustic tonotopic organisation of the auditory nerves. In clinical practice, little attention has been paid to the distribution of acoustic input across the electrodes of an individual patient, that might vary in terms of spacing and absolute tonotopic location. In normal-hearing listeners, Baskent and Shannon (J. Acoust. Soc. Am. 113, 2003) simulated implant signal processing conditions in which the frequency range assigned to the array was systematically made wider or narrower than the simulated stimulation range in the cochlea, resulting in frequency-place compression or expansion, respectively. In general, the best speech recognition was obtained when the input acoustic information was delivered to the matching tonotopic place in the cochlea with the least frequency-place distortion. The present study measured phoneme and sentence recognition scores with similar frequency-place manipulations in six MED-EL COMBI 40+ implant subjects. Stimulation locations were estimated using the Greenwood mapping function based on the estimated electrode insertion depth. Results from frequency-place compression and expansion with implants were similar to simulation results, especially for postlingually deafened subjects, despite the uncertainty in the actual stimulation sites of the auditory nerves. The present study shows that frequency-place mapping is an important
factor in implant performance and an individual implant patient’s map could be optimised with functional tests using frequency-place manipulations.

Abstract:

Neural-population interactions resulting from excitation overlap in multi-channel cochlear implants (CI) may cause blurring of the "internal" auditory representation of complex sounds such as vowels. In experiment I, confusion matrices for eight German steady-state vowel-like signals were obtained from seven CI listeners. Identification performance ranged between 42% and 74% correct. On the basis of an information transmission analysis across all vowels, pairs of most and least frequently confused vowels were selected for each subject. In experiment II, vowel masking patterns (VMPs) were obtained using the previously selected vowels as maskers. The VMPs were found to resemble the "electrical" vowel spectra to a large extent, indicating a relatively weak effect of neural-population interactions. Correlation between vowel identification data and VMP spectral similarity, measured by means of several spectral distance metrics, showed that the CI listeners identified the vowels based on differences in the between-peak spectral information as well as the location of spectral peaks. The effect of nonlinear amplitude mapping of acoustic into "electrical" vowels, as performed in the implant processors, was evaluated separately and compared to the effect of neural-population interactions. Amplitude mapping was found to cause more blurring than neural-population interactions. Subjects exhibiting strong blurring effects yielded lower overall vowel identification scores.

Abstract:

Objective: The purpose of this study was to conduct a large-scale investigation with adult recipients of the Clarion, MED-EL, and Nucleus cochlear implant systems to (1) determine average scores and ranges of performance for word and sentence stimuli presented at three intensity levels (70, 60, and 50 dB SPL); (2) provide information on the variability of scores for each subject by obtaining test-retest measures for all test conditions; and (3) further evaluate the potential use of lower speech presentation levels (i.e., 60 and/or 50 dB SPL) in cochlear implant candidacy assessment. Design: Seventy-eight adult cochlear implant recipients, 26 with each of the three cochlear implant systems, participated in the study. To ensure that the data collected reflect the range of performance of adult recipients using recent technology for the three implant systems (Clarion HiFocus I or II, MED-EL COMBI 40+, Nucleus 24M or 24R), a composite range and distribution of consonant-nucleus-consonant (CNC) monosyllabic word scores was determined. Subjects using each device were selected to closely represent this range and distribution of CNC performance. During test sessions, subjects were administered the Hearing in Noise Test (HINT) sentence test and the CNC word test at three presentation levels (70, 60, and 50 dB SPL). HINT sentences also were administered at 60 dB SPL with a signal-to-noise ratio (SNR) of +8 dB. Warble tones were used to determine sound-field threshold levels from 250 to 4000 Hz. Test-retest measures were obtained for each of the speech recognition tests as well as for warble-tone sound-field thresholds. Results: Cochlear implant recipients using the Clarion, MED-EL, or Nucleus devices performed on average equally as well at 60 compared with 70 dB SPL when listening for words and sentences. Additionally, subjects had substantial open-set speech perception performance at the softer level of 50 dB SPL for the same stimuli; however, subjects’ ability to understand speech was poorer when listening in noise to signals of greater intensity (60 dB SPL + 8 SNR) than when listening to signals presented at a soft presentation level (50 dB SPL) in quiet. A significant correlation was found between sound-field thresholds and speech recognition scores for presentation levels below 70 dB SPL. The results demonstrated a high test-retest reliability with cochlear implant users for these presentation levels and stimuli. Average sound-field thresholds were between 24 and 29 dB HL for frequencies of 250 to 4000 Hz, and results across sessions were essentially the same. Conclusions: Speech perception measures used with cochlear implant candidates and recipients should reflect the listening challenges that individuals encounter in natural communication situations. These data provide the basis for recommending new candidacy criteria based on speech recognition tests presented at 60 and/or 50 dB SPL, intensity levels that reflect real-life listening, rather than 70 dB SPL.

Abstract:
After successful cochlear implantation in one ear, some patients continue to use a hearing aid at the contralateral ear. They report an improved reception of speech, especially in noise, as well as a better perception of music when the hearing aid and cochlear implant are used in this bimodal combination. Some individuals in this bimodal patient group also report the impression of an improved localization ability. Similar experiences are reported by the group of bilateral cochlear implantees. In this study, a survey of 11 bimodally and 4 bilaterally equipped cochlear implant users was carried out to assess localization ability. Individuals in the bimodal implant group were all provided with the same type of hearing aid in the opposite ear, and subjects in the bilateral implant group used cochlear implants of the same manufacturer on each ear. Subjects adjusted the spot of a computer-controlled laser-pointer to the perceived direction of sound incidence in the frontal horizontal plane by rotating a trackball. Two subjects of the bimodal group who had substantial residual hearing showed localization ability in the bimodal configuration, whereas using each single device only the subject with better residual hearing was able to discriminate the side of sound origin. Five other subjects with more pronounced hearing loss displayed an ability for side discrimination through the use of bimodal aids, while four of them were already able to discriminate the side with a single device. Of the bilateral cochlear implant group one subject showed localization accuracy close to that of normal hearing subjects. This subject was also able to discriminate the side of sound origin using the first implanted device alone. The other three bilaterally equipped subjects showed limited localization ability using both devices. Among them one subject demonstrated a side-discrimination ability using only the first implanted device.

Abstract:
OBJECTIVES: The Würzburg bilateral cochlear implant (CI) program was started with the aim to improve the patients’ communicative abilities in complex listening situations. In this study, the auditory skills of children using bilateral cochlear implants were evaluated. STUDY DESIGN AND SETTINGS: Qualitative data based on free observations in the rehabilitation setup were collected in 39 bilaterally implanted children. A speech discrimination in noise test was performed in 18 of these children; lists of bisyllabic words were presented in noise at a signal to noise ratio (SNR) of +15 dB. RESULTS: Qualitative and quantitative data show clearly that bilateral CI improves the children's communicative behaviour, especially in complex listening situations. Children examined with the speech in noise test scored significantly better under the bilateral condition compared to the unilateral condition. Integration of the second implanted side and use of binaural information was observed to be easier and faster in children with a short time lag between both implants. CONCLUSIONS: To be able to obtain optimal benefit from bilateral cochlear implants, an intensive rehabilitation program is necessary. The important aspects of such a program are creating realistic expectations in older children before implantation; performing the first processor fitting of the second side with the first side switched on; and separate intensive training with the new system in order to balance out the hearing competence of the second CI with that of the first.

Abstract:
Pulse rate difference limen (PRDL) and amplitude modulation difference limen (AMDL) were assessed as a function of base rate and cochlear electrode location in seven (three for AMDL) subjects implanted with the MED-EL COMBI 40+ implant. The MED-EL COMBI 40+ electrode array allows deep insertion of the electrode up to the apex of the cochlea to minimize the rate/place mismatch for pulse rates below 500 pps. A three interval, two alternative forced-choice procedures with feedback was used to measure the difference limen. The base rate was in the range between 200 and 800 pps. The carrier rate for the AMDL measurement was 5081 pps. The PRDL increased with increasing base pulse rate. At 200 pps the average PRDL measured at the apical electrode amounted to 48.7 pps, at 400 pps the average PRDL reached 206.6 pps. No significant difference between PRDL obtained from apical or basal electrodes could be observed. AMDL was higher than PRDL at all tested base rates. The ability to discriminate rate changes is limited to base rates up to about 283 pps. The results indicate that rate changes smaller than a major third do not elicit distinguishable auditory perceptions in electrical hearing. The
The absence of a difference between apical and basal electrode locations indicates that a reduction of the rate/place mismatch does not improve discrimination performance.

Chow LCK, Hui Y, Au DKK, Chu KMY, Minimally invasive surgery for different types of cochlear implant, 75-77

Veekmans K, Nopp P, D’Haese P, Moeltner A, Speech comprehension over the telephone in adult cochlear implant subjects, 94-6

Kim CS, Chang SO, Lim D, Clinical evaluation of performance in children and adults with MED-EL TEMPO+ speech processors, 96-7

Oh YL, Kim SC, Comparison of vocabulary size and speech performance in cochlear implantees in the institutional setting pre- and post-implantation, 118-20

Park MH, Lee KS, Early development of auditory performance in implanted infants and children with EARS-K in Korea, 120-4

Chu KMY, Au DKK, Hui Y, Chow CK, Wong RK, Wei WI, Short electrode insertion in cochlear implants: Performance in speech production, 126-8

Au DKK, Chu KMY, Chow LCK, Hui Y, Wei WI, Cognitive abilities of patients with cochlear implants in the discrimination of tone stimuli with minimal contrast, 179-81

Iwaki T, Masumura C, Yasuoka E, A Case of bilateral cochlear implantation (MED-EL COMBI 40+), 228-9

Abstract:
This article presents a simple method of analysing speech test scores which are biased through ceiling effects. Eighty postlingually deafened adults implanted with a MED-EL COMBI 40/40+ cochlear implant (CI) were administered a numbers test and a sentence test at initial device activation and at 1, 3, 6, 12 and 24 months thereafter. As a measure for speech recognition performance, the number of patients who scored at the ‘ceiling level’ (i.e. at least 95% correct answers) was counted at each test interval. Results showed a quick increase in this number soon after device activation as well as a continuous improvement over time (numbers test: 1 month: 51%; 6 months: 73%; 24 months: 88%; sentence test: 1 month: 33%; 6 months: 49%; 24 months: 64%). The new method allows for the detection of speech recognition progress in CI patient samples even at late test intervals, where improvement curves based on averaged scores are usually assuming a flat shape.

Abstract:
Objective: To evaluate cochlear implant trauma to intracochlear structures when inserting the electrode via the round window membrane. Material and Methods: Eight fresh human temporal bones were evaluated histologically after insertion using two types of cochlear implant array. Bones underwent a special fixation and embedding procedure that allowed sectioning of undecalcified bone with the electrode in situ. Insertions depths were evaluated radiologically and histologically. Results: All arrays were found in the scala tympani of the cochlea.
Basa trauma could be avoided in all but one specimen. The mean depth of insertion was 382.5 degrees. Apically, only one implanted bone showed cochlear trauma exceeding lifting of the basilar membrane. Conclusion: Insertions through the round window membrane were shown to be atraumatic, even in basal cochlear regions. This route of insertion might be very effective for combined electric and acoustic stimulation of the auditory system.

Abstract:
Although the physical characteristics of cochlear implant electrode arrays vary substantially among manufacturers, many otolaryngologists have adopted a surgical cochleostomy technique that is familiar to all of them. The objective of this study was to compare the insertion dynamics of the MED-EL Flex electrode using two different sized cochleostomies. Six temporal bones were prepared with either a small fenestra (~1.0mm) or a larger fenestra (~1.8mm) cochleostomy and the electrodes inserted under video fluoroscopy. The resulting video images were analyzed for depth of insertion as well as dynamic flexion of the electrode during insertion. The study demonstrated that small-fenestra cochleostomies have a 'pool cue' or 'billiard cue' effect, stabilizing the electrode cable and resulting in easier and deeper insertions. This is achieved by limiting the buckling of the electrode just inside the cochleostomy site.

Article in German.

Abstract:
Background: Cochlear implants (CI) convert acoustic events into electrical pulses. The auditory nerve picks these tiny electrical pulses up and sends them to the brain. The dynamics of the audible sound is compressed considerably. The limits for stimulation are determined with the patient. A map law determines which sound pressure level is assigned to which stimulation level. A sufficient speech understanding requests an allocation of high stimulation levels for weak sound signals. The higher the sound level, the lower the increase. Unfortunately, with such kind of map law unwanted background noise is also presented as well audible stimulation. These stimuli are often annoying to CI users in everyday situations. Patients and method: The possibility to give an s-shaped course to these map laws was examined in 9 patients. After the fitting procedure their speech understanding were tested. The results were compared with the results of former tests. Results: 8 patients reported definite improvement of their hearing situation. Such map laws seem, therefore, suitable to optimise speech processor programming.

Abstract:
An instrument for measuring and tracking changes in auditory skill development over time was developed for use with a group of children with profound deafness who received a MED-EL COMBI 40+ cochlear implant. The aim of this paper is to describe the use of this instrument, the Checklist of Auditory Communication Skills, and to present results obtained both pre- and post-operatively on a population of children who participated in the MED-EL COMBI 40+ Cochlear Implant System Clinical Trial in the United States. The Checklist of Auditory Communication Skills is intended to provide a means for rehabilitative professionals to track progress on a variety of auditory therapy targets arranged in hierarchical fashion. These behaviours range from the most basic detection skills through advanced auditory processing.

Abstract:
Evaluation of Auditory Responses to Speech (EARS) is a test battery that was developed to measure the progress in the performance of children with cochlear implant. EARS was compiled in 1996 and is designed to assess hearing and speech perception skills in cochlear-implanted children. To date, the test battery has been
adapted in 17 languages and is in use in various clinics worldwide. The aim of this study was to validate and determine the usability of a Greek EARS version in children with normal hearing. It was necessary to investigate whether the test items are appropriate for the language development in Greek children because of temporal and structural differences in language acquisition between Greek and English. Seventeen monolingual Greek children with normal hearing have been tested, aged 4 to 6 years, with the revised Greek version of EARS. The results pointed out the usability of EARS as an auditory test instrument for Greek children. Some materials and tasks had to be revised. The children had no difficulties with most of the subtests. In two of the seven subtests, children had some problems, perhaps due to their higher cognitive demand.

Abstract:
Objective: Magnetic resonance imaging (MRI) has been contraindicated when cochlear implants containing an internal magnet are in place because of concerns regarding torque, force, demagnetization, artefacts, induced voltages, and heating. The objective was to determine the magnetic field strength of MED-EL COMBI 40+ cochlear implant internal magnets after MRI studies. Study design/methods: Two fresh cadavers were used to study demagnetization using a repeated measures design and a magnetometer. Pre- and post-MRI measurement of magnetic field strength was completed. Five sets of sagittal T1-weighted, axial T1-weighted, and axial T2-weighted sequences were performed on a cadaver at 0.2 Tesla in the device-up and device-down positions. In the other cadaver, 15 sets of sagittal T1-weighted, axial T1-weighted, and axial T2-weighted sequences were performed on a cadaver at 1.5 Tesla were conducted, 5 each with the head oriented at 80, 90, and 100 degrees rotated around the yaw plane (rotated around the z-axis). Subsequently, three cochlear implant patients completed 0.2 Tesla MRIs. For these patients, subjective and objective assessment of cochlear implant performance was performed. Setting: Academic medical centre. Results: In the cadaver studies, analysis of variance showed no significant difference in the magnetic field strength after the 0.2 or 1.5 Tesla scans. There was no significant difference in the magnetic field strength for the three patients undergoing 0.2 Tesla MRIs and no adverse consequences, including no changes in telemetry, auditory sensations, non-auditory sensations, and sound quality. CONCLUSIONS: No significant demagnetization of the internal magnet occurred during repeated 1.5 Tesla MRI scans with the head orientations used in this study. In the cochlear implant patients, no significant demagnetization of the internal magnet occurred after a 0.2 Tesla MRI.

Abstract:
Objective: Electrode pitch ranking was assessed as a function of cochlear region, electrode spacing, and stimulation rate in eight subjects implanted with the MED-EL COMBI 40+ implant. The MED-EL COMBI 40+ electrode array allows deep insertion of the electrode up to the apex of the cochlea and provides a wide electrode spacing of 2.4 mm. Design: The pitch of a reference electrode was compared with the pitch of two apical and two basal probe electrodes using a two-alternative forced-choice procedure. The reference electrodes were placed in the apical region, in the middle region, and in the basal region of the cochlea. Each condition was tested at pulse rates of 1515 pps, 500 pps, and 250 pps. Results: Electrode pitch ranking did not depend on electrode spacing, the position of the reference electrode in the cochlea, or stimulation rate. Conclusions: These results indicate that a spacing of 2.4 mm seems sufficient to allow good electrode pitch ranking performance for the average user and that electrode pitch ranking is similar in the apical, middle, and basal region of the cochlea, irrespective of the stimulation rate. Most importantly, the results of this study indicate that residual neural structures in the apical region of the cochlea are sensitive to pitch changes provided by different places of electrical stimulation.

Abstract:
Objective: The aim of the study was to investigate the impact of bilateral cochlear implant use in speech perception in noise in bilateral users of the MED-EL COMBI 40/40+ cochlear implants. Design: Speech reception thresholds were measured in 21 subjects using the Oldenburg sentence test. Speech was always presented form

Abstract:
Objective: The purpose if the study was to investigate sound localisation with bilateral and unilateral cochlear implants. Design: Sound localisation tests were performed on 20 bilaterally implanted MED-EL COMBI 40/40+ users. All subjects were bilaterally implanted during adolescence or later. Sound localisation was tested in the frontal horizontal plane by using 9 equally spaced loudspeakers and speech-shaped noise bursts at randomised levels. Results: The group of subjects who were bilaterally deafened after 5 to 6 years of age (18 subjects) showed a statistically significant improvement in sound localisation when using both implants, compared with when using only one. The mean deviation between the presentation azimuth and the response azimuth was 16.6° when using both implants, which was on average 37.1° smaller than when using one implant only. When adjusted for the localisation error that was constant across loudspeakers, the mean deviation was 15.9° for bilateral implant use, representing an improvement of 30.1° over unilateral implant use. Statistical analysis showed that in this group, performance measures were not correlated with subject details such as age at onset of deafness or duration of unilateral implant use. In contrast, subjects who were bilaterally deafened before 6 years of age (2 subjects) did not show a benefit in sound localisation from bilateral implants. Conclusions: Bilateral cochlear implants offer a substantial benefit in sound localisation to late-deafened, late-implanted subjects. The very limited data from early-deafened subjects implanted at a later age could suggest that these subjects may not benefit in sound localisation from bilateral cochlear implants. It is possible that early implantation for early deafened subjects might allow better acquisition of spatial hearing, thus leading to improved localisation performance.

The Meaningful Auditory Integration Scale (MAIS) is a parent-report questionnaire for assessing auditory behaviour in aurally habilitated children. This study addressed the reliability and convergent validity of three different language versions of the MAIS: English, German, and Polish. A total of 114 parents (English: n = 27; Polish: n = 37; German: n = 50) completed the MAIS pre-operatively and at six months after cochlear implantation. Internal reliability (Cronbach’s Alpha) ranged from 0.92 to 0.95 pre-operatively, and from 0.87 to 0.93 at six months. Split-half reliability was at least 0.90 pre-operatively, and ranged from 0.76 to 0.89 at six months. Corrected item-total correlation coefficients were significant (p < 0.05) for all items except for item 1, which showed poor correlations in the Polish version. Correlation of the MAIS with the Listening Progress Profile (LIP), as a measure for convergent validity, yielded coefficients between 0.81 and 0.73 pre-operatively, and between 0.79 and 0.61 at six months. These findings demonstrate high reliability and convergent validity of the three MAIS versions.

Abstract:
Objectives: Literature that discusses the benefits of cochlear implantation (CI) in children under the age of two is limited. Previous concerns about surgical risk have been raised and addressed; however, actual benefit in terms of outcomes needs to be clearly defined. This study evaluates outcomes of children implanted under the age of two and compares them to children implanted at a later age. Methods: Data were reviewed from the MED-EL
International Children's study database. Thirty-seven children enrolled in the study have received cochlear implants before the age of two. Outcomes were assessed using the LiP and MTP tests and the MAIS and MUSS questionnaires pre-operatively and then at initial fitting, 1, 3, 6 and 12 months after first fitting and then annually thereafter. Results: Statistical analysis demonstrated that these children's scores improved significantly over time. Improvement was shown to occur at a quicker rate than for children implanted at an older age with the MTP and MUSS, but not with the LiP and the MAIS. Scores may be limited by sample size and the fact that children reached ceiling on some tests. Conclusions: Results suggest a distinct advantage early implantation may have for severe to profoundly hearing impaired children. This may be particularly the case for skills necessary for development of receptive and expressive language skills.

Abstract:
High, moderate and low stimulation rates of 1800, 800 and 400 pulse per second (pps)/channel, respectively, were used to test the effects of stimulation rates in discrimination and identification of Cantonese lexical tones in 11 Chinese post-lingually deafened adults with cochlear implants (CIs). The subjects were implanted with the MED-EL COMBI 40+ CI system. They were randomly assigned to each of the stimulation rate conditions according to an ABC design. In both the Cantonese lexical tone tests, the subjects reached the highest scores in the high-stimulation-rate condition, and the lowest scores in the low-stimulation-rate condition (p<0.01). Post hoc comparisons between different stimulation rates did not yield consistent results. This study demonstrated that the maximum stimulation rate pf 1800pps/channel could be an ‘optimal’ stimulation rate and an informed choice of parameter for the benefit of Cantonese-speaking CI users in lexical tone perception.

Abstract:
Improvement in implant technology and the fact that children with cochlear implants have surpassed all expectations have led the field to believe that open-set speech understanding is a common and expected outcome. The available literature suggests this to be the case in open-set word understanding. This study shows results of forty-one pre-lingually deafened children with a minimum of 3 years cochlear implant experience. Children were assessed on the EARS test battery which includes open-set phoneme, word and sentence tests. Results show that some open-set skills emerge by 6 months after implantation. There is significant improvement over time, even after 3 years of cochlear implant experience. A significant effect of age at implantation is also demonstrated. Results suggest that cochlear implanted children develop open-set speech recognition soon after implantation and these skills develop over a long-period of time, highlighting the need for continued therapy to maximise listening and learning.

Abstract:
The use of electrically evoked stapedius reflex thresholds (eSRT) has been suggested as a useful means for creating a cochlear implant speech processor programme. Studies in adult have shown that there is a high correlation between eSRT programmes and programmes created through behavioural testing. This study assessed the viability of using eSRT to create speech processor programmes in children, an often difficult-to-test population. Seven children with an average CI experience of 1.1 years participated in the study. Their MCL levels, established either through behavioural testing or through eSRT, were compared to each other; and parents were asked about their observations on which programme was superior. There was a high correlation between MCLs (r²=0.789), and there was no significant difference between the programmes, with the eSRT programme being slightly softer than the behavioural programme. Parents reported that the eSRT programme was as good as or better than the behavioural programme. Further studies need to be conducted on using the eSRT programme in the first fitting period in inexperienced CI users. However, current data suggest the viability of using eSRT programmes safely in the paediatric and difficult to assess population.

We conducted a mail survey of patients who had received cochlear implants to ascertain their ability to communicate on the telephone. Of 86 patients who responded, 38 (44%) did not use the telephone at all, 36 (42%) were able to use the telephone without assistance (independent users), and 12 (14%) were able to use the telephone with some type of assistance. Factors associated with independent use were male sex, older age at onset of hearing loss, longer duration of hearing loss, successful use of hearing aids prior to cochlear implantation, implantation with a MED-EL COMBI 40+ device, and a shorter duration of implant use. But regardless of circumstances, our findings suggest that many cochlear implant patients can use the telephone during daily activity without the need for assistive devices or relay services.

Abstract:
Objectives: To determine the indications for which the Med-EL compressed and split arrays have been used in the United States, to assess the success achieved in insertion, to determine hearing outcomes, and assess complications associated with using these arrays. Study design: Retrospective review of data gathered during the US clinical trial. Methods: Data were extracted concerning indications for use, depth of insertion, number of electrodes in use, 3 and 6 month performance outcomes, and complications. The results obtained in postmeningitic patients using the compressed array were compared with patients using the split array. Results: Six adults and 22 children have been implanted with the compressed array. The principal indications have been postmeningitic or congenital cochlear malformations. The average improvement seen in the Meaningful Auditor Integration Scale scores was 17.6 for the compressed array group and 13.9 for the split array group. The same number of electrodes was inserted on average for both groups, with comparable numbers of electrodes in use. Conclusions: The MED-EL compressed array is an alternative to the standard or split array in managing patients with postmeningitic deafness or congenital cochlear malformations. Benefits to these patients are most clearly seen in subjective measures.

Abstract:
Objective: The objective of this study was to describe the interobserver agreement of otologists in judging the extent of cochlear electrode insertion as depicted in plain radiographs done in various projections relative to that of Stenvers (45° from midline). Study design: Ten experienced US MED-EL cochlear implant surgeons, unaware of the image history, judged depths of electrode coiling in 12 images. Methods: In a bequeathed cranial base specimen, a standard MED-EL COMBI 40++ electrode was inserted 3mm less than full and stabilised. With a custom cephalostat, the specimen was positioned in the Frankfurt horizontal plane. Plain radiographs were made in six projections in 15° increments, from posterior-anterior to near lateral. After the electrode array was withdrawn 5mm and stabilised, six additional radiographs were similarly taken. Results: Greater variability of assessed coiling was associated with projections other than Stenvers. The coefficient of variation for Stenvers was significantly less than half that of the anterior-posterior and other projections studied. Conclusion: In plain radiographic assessment of the degree of coiling of the MED-EL electrode, interobserver agreement was best for the Stenvers view.

Abstract:
Objectives: as results with cochlear implantation have continued to improve, patients with some remaining cochlear function have become eligible for cochlear implantation. Thus, preservation of acoustic hearing after implantation has gained importance. Hearing preservation can be considered a benchmark for atraumatic implantation preventing neural degeneration from loss of residual hair cells or subsequent to local trauma. In this prospective study, the possibility of preserving low-frequency hearing in cochlear implantation using a modified surgical technique has been explored. Material and methods: on a prospective study design, 1 subjects with considerable low-frequency hearing of 20-60dB in the frequency range 125-500Hz, but with unsatisfactory speech understanding with hearing aids of <35% monosyllabic word understanding were implanted with a MED-EL
COMBI 40+ cochlear implant. The insertion depth was intentionally limited to 19-24mm to prevent damage to low-frequency regions of the cochlea. Pre- and post-operative pure-tone thresholds were measured. Results: hearing was conserved within 0-10dB in 9/14 subjects and within 11-20dB in 3/14 subjects; in 2/14 subjects hearing was completely lost in the implanted ear. Thus hearing could at least partially be conserved in 12/14 subjects (84%).

Median threshold values decreased by 10, 15, 17.5 and 5dB at 125, 250, 500 and 1000Hz respectively. Even high levels of hearing, e.g. 30dB at 500Hz, could be maintained after implantation in some subjects. Conclusions: this study reports successful conservation of hearing after cochlear implantation using a modified surgical technique. Even high levels of hearing could be maintained; showing that implantation of an intracochlear electrode can be performed atraumatically with preservation of functional structures.

The use of cochlear implantation to treat patients with inner ear malformations such as Mondini dysplasia has been increasingly successful. Until now, conventional hearing aids in these patients have not performed well. Consequently, the hearing problems for patients with this condition has been somewhat improved with the use of cochlear implants. Various results of cochlear implantation have been reported in these patients so far. This is a report of 5 patients with Mondini malformation who have undergone cochlear implant surgery.

Verschuur C, Effect of stimulation rate on speech perception in adult users of the MED-EL COMBI 40+ and Ineraid cochlear implants, 15-6.

Eyles JA, Brickley, GJ Speech perception by adult COMBI 40+ users using a telephone stimulation test, 29-30.

Sainz M, de la Torre A, Roldan C, Application of statistical analysis of the programming maps for fitting cochlear implants in children, 59-60.

With 10 cochlear implant (CI) wearers having fully inserted COMBI 40+ electrodes, acute speech performance tests were performed simulating different contact distributions along the cochlea by selectively activating 0 to 12 stimulation channels. Within patent comparison using monosyllables and sentences in noise as test material showed that cochlear coverage, i.e. the extent of the contact array along the cochlea, is the decisive electrode parameter determining speech performance. With a 30mm deep insertion, monosyllable scores improved significantly by 24% over a 20mm insertion depth. Speech reception thresholds improved by 6.6dB. No difference in speech understanding was found between 8 and 12 channel configurations, both featuring full cochlea coverage, respectively. It is concluded that deep insertion improves tonotopicity and, due to the larger contact distance, channel separation as well. As a corollary, with deep insertion, the need for coding strategies providing extra channel separation by additional processing is eliminated.

Improvement of cochlear implant technology has resulted in the extension of the selection criteria for cochlear implant candidates. Prelingually deafened children are considered for the implantation even if they still demonstrate some benefits from the use of hearing aids. The aim of this study was to examine speech perception
skills in patients with cochlear implant and hearing aid in the contralateral ear. Positive results obtained indicate that patients with combined stimulation perform better than with cochlear implant or hearing aids only.

No abstract.

The aim of this study was to determine the correlation between the maximum comfort levels (MCL) and the electrical elicited stapedius reflex threshold (ESRT). Material consisted of six pre-lingually deafened children, sampled from the group of the experienced users of COMBI 40+ implant system. The ESRT was measured postoperatively, contralaterally, using an up/down protocol. ESRT values were compared with the MCL of the child’s map in each channel. It was possible to measure the ESRT in each case. The correlation between the MCL and ESRT was observed, although in two cases in some channels the ESRT was relatively higher than the programmed MCL. However, in these children, there was no evidence of discomfort during the measurements. The child’s map was then corrected according to the measurement results. Children accepted the new map. Obtained results confirmed the results of other studies that the ESRT could be very useful in estimation of MCL in the paediatric population.

Objectives: To investigate the issues for very young children, families and cochlear implant centres surrounding the transfer from a body-worn (BW) speech processor to a behind-the-ear (BTE) speech processor. Study design: A group of 18 young children (median age 3.5 years) was transferred from a CIS PRO+ (BW) processor to a TEMPO+ (BTE) processor 2 to 3 months after initial programming. Programming issues were investigated and sound field performance measures carried out. Parental perceptions of the changeover were assessed by use of a questionnaire designed for the study, covering eight categories including such issues as response to speech, equipment handling, ease of use, troubleshooting, comfort and length of daily use. Results: All 18 questionnaires were returned. The results illustrated the degree of preference for either the BW or BTE processor for each category. Of eight categories, there were four that indicated a statistically significant preference for the TEMPO+, and one indicating a statistically significant preference for the CIS PRO+. For the questionnaire results overall, there was a significant preference for the TEMPO+. Conclusion: Parental perceptions indicate that the BTE TEMPO+ is suitable for use with very young children.

Sainz M, Roldan C, de la Torre A, Gonzalez MV, Ruiz JM, Transitory alterations of the electrode impedances in cochlear implants associated to middle and inner ear diseases, 407-10.

No abstract

Three patients have been provided with auditory brainstem implants at the Institute of Physiology and Pathology of Hearing I the years 1998 – 2001. COMBI 40+ implant systems were applied. This modern auditory prosthesis can be used in the case of bilateral, total hearing losses resulting from neurofibromatosis type II. After activation of the implant system, the patients took part in a 2 year rehabilitation programme, which is obligatory for adults and provided within the Warsaw Brainstem Implant Programme.

Abstract:
This study describes open-set speech recognition in cochlear implant subjects with ossified cochleae and compares it to a control group with open cochleae. Twenty-one postlingually deafened adults with a MED-EL COMBI 40/40+ GB split electrode implant were matched to patients using a MED-EL cochlear implant with a
standard electrode. Speech recognition was assessed over an 18-month period. Split-electrode patients improved significantly over time, but their scores were significantly lower and increased significantly slower than those of controls. Of 14 patients with a duration of deafness less than 20 years, average sentence test scores were 50%, and average monosyllabic word tests scores were 31%. This study provides evidence that cochlear implantation is beneficial to patients with ossified cochleae, but early implantation is advisable.

Abstract:
The ossified cochlea poses both concerns and challenges to any implant team. One of the surgical aims is to implant as many of an implant system’s electrodes into the cochlea as close to the modiolus as possible, thus facilitating stimulation of the surviving cell bodies in the spiral ganglion. Within the field of otorhinolaryngology various surgical navigation systems have been introduced to facilitate surgical orientation during endoscopic sinus and skull-base surgery. The principle behind such systems is that specialised software uses high-resolution computerised tomography and magnetic resonance imaging scans to create a 3D image of the patient’s anatomical landmarks. Surgical instruments registered into, or linked with, the system can then be tracked within the 3D model. This is the first time this system has been described for surgery of the inner ear, and we describe how the technique allows more precise control of the bur tip while drilling tunnels that approximate with the apical and distal parts of the basal coil of the ossified cochlea.

Abstract:
MED-EL launched their ear-level speech processor, the TEMPO+, in 1999. Studies have already demonstrated improved speech perception, sound quality and the ability to enjoy music with the TEMPO+ due to the new CIS+ speech coding strategy. This study evaluated responses to 185 questionnaires about ease of handling and usage of the TEMPO+, opinion and satisfaction about the TEMPO+ and its performance, as well as satisfaction with accessories. There was particular interest to see if the TEMPO+ was suitable for use with children. Results showed that MED-EL CI users felt comfortable manipulating the dials and switches, changing the battery pack, using external sources of input and with provided accessories. Overall, there was excellent satisfaction with the TEMPO+. Notably, 1/3rd of respondents were under the age of 10. Results show the suitability of the TEMPO+ behind-the-ear speech processor for young children.

Abstract:
We report on a patient with bilateral cochlear implants (a MED-EL COMBI40 and MED-EL COMBI 40+), as well as considerable experience in scuba diving with his cochlear implants. After having been exposed to 68 and 89 dives, respectively, in depths of up to 43m, both cochlear implants are in working order and the patient continues to receive excellent speech recognition scores with both cochlear implant systems. The presented data show that scuba diving after cochlear implantation is possible over a considerable number of dives without any major negative impact on the implants.

Abstract:
Objective: to evaluate the time span over which there is greatest improvement in postlingually deaf adults undergoing cochlear implantation. Additionally, to quantify potential patient and device factors that may predict the postoperative results. Materials and methods: a longitudinal study was conducted. Numbers, monosyllables and sentence test results were collected for 66 cochlear implant subjects (COMBI 40/40+, N=60; Clarion HF2, n=2; Nucleus 24m/k, n=4) at regular intervals for up to 6 years following cochlear implantation. Results: all patients showed a steady improvement over time on all tests. Progress during the first 12 months was statistically significant, with further improvements being recorded after the 12-month testing period. The duration of deafness and number of electrodes (8 for the COMBI 40, 12 for the CMBI 40+) appeared to be weakly correlated with
postoperative performance. Re-implantation after device failure had no negative effect on speech reception. Subjects who were “upgraded” from an analogue to a digital cochlear implant improved their test results almost twofold. Conclusion: all the patients in our study gained substantial benefit form their cochlear implants. It is encouraging to note that the factors examined were not deemed to be relevant predictors of performance. Even long-term deaf subjects and re-implantees are able to achieve an excellent level of speech perception.

Abstract:
Auditory performance of cochlear implant (CI) children was assessed with the Listening Progress Profile (LiP) and the Monosyllabic-Trochee-Polyssyllabic-Word Test (MTP) following the EARS protocol. Additionally, the ‘initial drop’ phenomenon, a recently reported decrease of auditory performance occurring immediately after first fitting was investigated. Patients were 140 prelingually deafened children from various clinics and centres worldwide implanted with a MED-EL COMBI 40/40+. Analysis of LiP data showed a significant increase after 1 month of CI use compared to preoperative scores (p<0.01). No initial decrease was observed with this test. Analysis of MTP data revealed a significant improvement of word recognition after 6 months (p<0.01), with a significant temporary decrease after initial fitting (p< 0.01). With both tests, children’s auditory skills improved up to 2 years. Amount of improvement was negatively correlated with age at implantation.

Abstract:
Background: electrical stapedius reflex threshold are helpful in programming cochlear implants, but only approximately two-thirds of patients have identifiable reflexes. Hypothesis: childhood otitis media correlates with absent stapedius reflexes or with high electric stimulation needed to elicit a reflex in cochlear implantees. Study population: twenty-five adults with acquired hearing loss who underwent implantation with the MED-EL COMBI 40+ standard electrode array. Study parameters: the extent of temporal bone pneumatisation, an indicator of childhood otitis media, was measured from pre-operative computed tomographic images. Clinical units (in microamperes) needed to elicit a contralateral stapedius reflex, or maximum stimulation tried, were recorded. Results: no definite association of pneumatisation volume with intensity of stimulation was observed. The null hypothesis of no association cannot be rejected. Conclusion: childhood otitis media does not seem to explain absent electric stapedius reflexes and the wide range of clinical nits needed for maximum comfortable loudness level. Remaining potential explanations probably include the wide range of cochlear neurons that can be electrically stimulated, and that the maximum tolerable stimulation is too low to elicit a stapedius reflex.

Abstract:
Morphological examination of the human temporal bone in the apical region supports the benefits of deep electrode insertion. Initiation of spikes on peripheral processes close to the basilar membrane would provide improved channel selectivity during electrical stimulation but recruiting of nerve fibres requires a higher current. A clinical study was performed on 10 users of the MED-EL COMBI 40+ implant to evaluate the effect of the insertion depth of the cochlear implant electrode on speech perception. All subjects were implanted with the standard COMBI 40+ electrode with an insertion depth of >30mm. Acute speech tests were carried out in which stimulation was restricted to the apical, middle and basal regions of the cochlea in turn, and using electrode arrangements in which contacts were either distributed over the whole length of the cochlea or concentrated at the basal end, thus mimicking an insertion depth of ≈ 20mm only. The results showed that stimulation of the apical region of the cochlea supports a significant degree of speech understanding, and that distributing the contacts over the whole length of the cochlea improves speech perception in quiet and in noise.

Abstract:
Since auditory feedback is partially restored after cochlear implantation, the aim of the present study was to investigate features of vowels, which reflect improvements in speech production. Ten postlingually deafened subjects (5 male/5 female) were recorded reading a German text before and 3 and 12 months after implantation, respectively. Selected vowels were analysed regarding the fundamental frequency (F_0), the formant frequencies (F_1, F_2, F_3) and the vowel space (difference between F_1 and F_2 in Hertz). The F_0 decreased only descriptively after 3 and 12 months, respectively. F_1 of the vowel /e/ was significantly lower after 12 months (411 ± 20 compared to 349 ± 25Hz, $p < 0.05$ and for /o/ after 3 months (446 ± 29 compared to 408 ± 31Hz, $p < 0.05$) for the male patients: their vowel space also expanded significantly for the vowel /o/ (372 ± 37 compared to 467 ± 32Hz, $p < 0.05$) after 12 months. Regained auditory feedback after cochlear implantation had an effect on the improvement of the production of vowels.

Abstract:
The history of cochlear implants is marked by large improvements in performance, especially over the past two decades and especially due to the development of ever-better processing strategies. Although the progress to date has been substantial, present devices still do not restore normal speech reception, even for top performers and particularly for listening to speech in competition with noise or other talkers. In addition, a wide range of outcomes persist, with some patients receiving little benefit using the same devices that support high levels of speech reception for others. The purpose of this review is to describe some likely possibilities for further improvement, including (a) combined electric and acoustic stimulation of the auditory system for patients with significant residual hearing, (b) use of bilateral implants, (c) a closer replication with implants of the processing steps in the normal cochlear, and (d) applications of knowledge about factors that are correlated with outcomes to help patients presently at the low end of the performance scale.

Abstract:
Channel balancing is important for correct perception when using multichannel cochlear implants. In this paper we analyse the effect of channel imbalance on hearing perception in cochlear-implanted patients. Based on warble tone audiometry measured for 10 implanted patients, we evaluate how hearing sensitivity is affected by an imbalance. We also study the distribution along the cochlea of the programming parameters for 146 patients. The parameters are compared for different groups of patients (defined taking into account the age at implantation, the stimulation mode, and the presence of severe cochlear damage). The aim of this study is to obtain information that can be useful for balancing the channels for the patients in the different groups, as well as to evaluate the effect of an imbalance on perception. These results provide complementary information that can be applied to the correct fitting of the cochlear implant processor.

Abstract:
The benefits of bilateral cochlear implants (CIs) versus unilateral CIs were evaluated by comparing the Cantonese lexical tone discrimination scores conducted in a quiet environment and against background noise. Four postlingually deafened Cantonese-speaking adults (2 men and 2 women) with bilateral CIs were included in the study. The subjects were under their own control in the monaural hearing condition. Both the Cantonese lexical tone stimuli and the speech-weighted background noise were presented at 0° azimuth and at a distance of 1m from the subject. The speech stimuli, which were maintained at 65dB sound pressure level, were presented in both quiet and against a background noise at signal to noise ratios (SNRs) of +15, +10, +5, 0, -5, -10 and -15. Against a background noise, the bilateral CIs required +5SNR only to obtain significant scores in discrimination Cantonese lexical tones and to achieve discrimination scores that were comparable to the optimal discrimination scores obtained in quiet. No significant difference in the discrimination scores was observed between binaural and monaural hearing conditions when the tests were conducted in quiet. Our study showed that in the presence of background noise, bilateral CIs were better than unilateral CIs in discrimination Cantonese lexical tones.

Abstract:

There is a significant group of patients whose hearing impairment is characterised by normal or slightly elevated thresholds in the low frequency band with nearly total deafness in high frequency range. These patients remain beyond the scope of effective treatment by hearing aids. We name this kind of hearing loss “partial deafness”. A new method of partial deafness treatment was applied in the case of a young woman. A partially-inserted cochlear implant was used to restore hearing at high frequencies, while preserving low-frequency acoustic hearing in the implanted ear. The results demonstrate a substantial improvement in speech discrimination and communication skills when electric stimulation on one side was combined with acoustic stimulation on both sides.

Article in Russian

Abstract:

The author describes how to perform the first switching on the speech processors (SP) and subsequent adjustment of cochlear implant SP. These SP COMBI 40/40+ and TEMPO+ were adjusted in 25 patients aged 2 to 27 years who lost hearing at the age of 0-26 years. By problems arising at the first switching on and adjustment, all the implanted patients can be divided into three groups: postlingual – those who lost hearing after speech establishment, perilingual – those who lost hearing step by step staring by hypoacusis; prelingual – those who had lost hearing before they could speak. How to adjust SP in each group of the above patients is described.

Abstract:

Pneumococcal otogenic meningitis is a rare postsurgical complication that can develop following stapedectomy and cochlear implantation. The bacterial infection can be fatal in some instances. A recent increase in the incidence of otogenic meningitis among cochlear implant wearers is of concern. The majority of meningitis cases are associated with a 2-component electrode manufactured by one cochlear implant company. The device with the added ‘positioner’ component has been withdrawn from the market (FDA Public Health Web Notification: Cochlear Implant Recipients may be at Greater Risk for Meningitis, Updated: August 29, 2002, www.fda.gov/cdrh/safety/cochlear.html). Not all cases have been subsequent to otitis media and symptoms have developed form less than 24h up to a few years after implantation. The purpose of this paper is to review and discuss the pathogenesis, pathology/bacteriology and to elaborate on some clinical features of otogenic meningitis in implanted children and adults. Essential aspects of surgery, electrode design, and cochleostomy seal are discussed. Conclusions are drawn from the available data and recommendations are made for good practice I cochlear implantation and follow up.

Abstract:

Neurofibromatosis type II (NF2) is a condition that may result in bilateral acoustic neuromas. The tumours and their removal may cause profound bilateral deafness. Because the auditory nerve is compromised, people with NF2 are unable to receive a cochlear implant to restore a sensation of hearing. Electrical stimulation of the auditory pathway can provide hearing in such people. This is possible by means of an auditory brainstem implant (ABI). This article focuses on the MED-EL high-rate multichannel ABI system. The system consists of the implanted and external components. Appropriate placement of the ABI is dependant on electrical auditory brainstem response testing performed intra-operatively. Data on a group of European patients implanted with the MED-EL ABI are presented. Results are promising and include some open-set speech ability

Abstract:

While, at the end of the 1970ies, cochlear implant devices enabled patients just to recognize and differentiate environmental sounds, today open-set speech recognition after cochlear implantation has become reality for many patients. Binaural cochlear implantation allows for even better speech understanding and for restoration of the spatial hearing. Consequently, indication to cochlear implantation has become successively expanded. Technological progress included the implantable electronics, the electrodes, and the speech coding strategies. As there are a lot of modifiable parameters, complex interactions between them are possible. Regarding the current high standard of technology, further progress includes the risk of not attaining all of the envisioned goals. On the occasion of the "Cochlear Implant" meeting at the German-Austrian ENT congress at Baden-Baden, a brief overview on the current status of discussion and on recent developments shall be provided.

Abstract:

Presented here are the results of speech perception measures and subjective scales from 68 children with 6 months of device experience and from 49 children with 12 months of experience using the MED-EL COMBI 40+ cochlear implant system. All children demonstrated bilateral profound hearing loss before operation, and 90% experienced onset before 3 years of age, but their hearing losses had a broad range of causes. A battery of age-appropriate objective speech perception measures was administered, in addition to a battery of subjective auditory skills assessments. The group data indicate that the children showed a statistically significant improvement in a wide array of speech perception skills and auditory behaviours with this device. In addition, subjective therapist survey data indicated changes in primary receptive and expressive communication method with COMBI 40+ device use. Individually, all children showed significant improvement on at least 1 of the speech perception measures used in the test battery. The evidence suggests that the MED-EL COMBI 40+ system can provide meaningful auditory information for profoundly deaf children, which in turn supports meaningful functional improvement in speech perception and communicative skill development.

Abstract:

The objective of the investigation described in this paper was the determination of the number of (widely spaced) active electrodes needed for users of a COMBI 40+ cochlear implant to achieve asymptotic performance in the recognition of speech against a background of wideband noise. This study measured the performance in speech tests of patients using the MED-EL implementation of continuous interleaved sampling with widely spaced electrode pair subsets of 2, 3, 4, 6, 8, and 10 out of a possible maximum of 12. An eight-vowel test, a 16-consonant test, and BKB sentences were presented a background of pink noise. Additionally, AB monosyllabic words were presented both in quiet and noise to processors with 6, 8 and 11 widely spaced electrodes. 11 subjects participated in this study. Using moderate signal-to-noise ratios, for these patients the curve relating percentage score to increasing numbers of active electrodes approached an asymptote before the 10-channel data point was reached. Asymptotic performance was achieved using four channels for consonants, and eight channels for sentences. Understanding of monosyllabic words reached a maximum value at a similar number of channels for both quiet conditions and against a background of pink noise, and the mean increase in test scores between 6 and 11 channels was only 7%. These results are similar to those of previous experiment carried out in quiet listening conditions. The data suggest that 12 frequency channels (the number implemented by the COMBI 40+ cochlear implant) are more than adequate for users to achieve asymptotic performance levels in clinical speech tests applied in the presence of wideband noise at moderate signal-to-noise ratios.

Abstract:

A patient with bilateral profound deafness was implanted with a Nucleus CI24M cochlear implant (CI) and used an Esprit behind-the-ear (BTE) speech processor. Thirteen months later, the implant had to be removed because of a cholesteotoma. As the same electrode could not be reinserted, a MED-EL COMBI 40S CI was implanted in the
same ear, and the patient used a TEMPO+ BTE speech processor. After 1 year of use of the COMBI40S/TEMPO+ system, speech recognition was rated better subjectively than with the CI24M/Espirit system. Speech recognition and subjective ratings were also assessed for two matched groups of 9 CI users each, using either an esprit or TEMPO+ processor. On average, speech recognition scores were higher for the group of TEMO+ users, but the difference was not statistically significant. Users of the Esprit processors rated their device higher in terms of cosmetic appearance and comfort of wearing.

Abstract:
Objective: The purpose of the study was to investigate speech understanding in quiet and noise in subjects bilaterally implanted with multi-channel cochlear implants. Design: Nine adults bilaterally implanted with the MED-EL implants were included in the study. The subjects were tested in three conditions: with both implants, with the right implant only, and with the left implant only. Speech tests included monosyllables in quiet and noise (10dB signal to noise ratio) and sentences in noise (10dB signal to noise ratio). Speech was presented from the front, and noise was presented either from 90° or 270° azimuth. Results: All subjects reported benefit from bilateral stimulation. Speech scores from all subjects were higher with bilateral than with unilateral stimulation. The average score across subjects for sentence understanding was 31.1 percentage points higher with both cochlear implants compared with the cochlear implant ipsilateral to the noise. The average score for recognition of monosyllabic words was 18.7 percentage points higher with both cochlear implants than with one cochlear implant. All of these differences in average scores were significant at the 5% level. Conclusions: Bilateral cochlear implantation provides a significant benefit in speech understanding in both quiet and noise.

Abstract:
Although cochlear implantation has proven to be a very effective method of rehabilitation for post-lingually deaf adults and pre-lingually deaf children, as electronic devices, cochlear implants are occasionally subject to damage or breakdowns. In these cases, re-implantation would be necessary. The aim of this study was to find out whether or not there are any negative effects on speech abilities after re-implantation with the same type of multichannel digital implant in the same ear. Seven patients were provided with a digital multichannel implant. One subject suffered manipulative damage to the implant, and in six subjects an implant failure was observed. All re-implantations were performed in the same ear as the initial implantation, with the same implant type. Parameters such as insertion depth and number of active channels were the same in all subjects before and after re-implantation. Immediately following the revision surgery, three patients attained the same level of hearing that they had with their original implants. Three months following re-implantation, five subjects achieved almost the same scores as they had before re-implantation. The results showed that cochlear implant patients undergoing re-implantation can anticipate achieving nearly the same level of speech recognition as they had with their original implant. Nevertheless, patients need to be aware of potential problems before undergoing re-implantation so that expectations are not too high.

Abstract:
Objective: The purpose of the study was to investigate speech reception in noise in subjects who had undergone bilateral implantation with multichannel cochlear implants. Methods: Nine adults with bilateral MED-EL implants were included in the study. The subjects were tested using both implants and the better implant only. Tests were performed in a symmetrical set up, which ideally eliminates and head shadow effect. Speech tests included sentences in quiet and at various signal-to-noise ratios. From the results, the gain in signal-to-noise ratios at the speech reception threshold was determined. Results: All subjects showed a substantial gain in signal-to-noise ratios of approximately 4dB on average. In addition, the gain in signal-to-noise ratios was essentially stable for as long as 4.4 years. Conclusions: The results indicate that bilateral cochlear implant users are able to binaurally process speech.

Abstract:

Objective: To investigate whether the residual hearing of severely hearing-impaired children and adults could be preserved using the soft surgery approach. Patients and methods: This project employed a prospective study design. All testing and surgery took place in the Institute of Physiology and Pathology of Hearing, Warsaw, Poland. Twenty-six patients (7 children and 19 post-lingually deafened adults) with residual hearing were assessed. Subjects were assessed using conventional pure-tone audiometry at least 1 month prior to surgery. Cochlear implant surgery with a MED-EL COMBI 40/40+ standard electrode array was conducted, using the soft surgery approach. Pure-tone audiometry thresholds were re-assessed at least 1 month after surgery. The researchers assessed change in auditory thresholds using pure-tone audiometry to determine preservation of residual hearing. Results: Sixteen of 26 patients (62%) retained their residual hearing within 5dBHL of pre-operative scores. Only 5 of 26 patients (19%) lost all measurable residual hearing after cochlear implantation. This suggests that surgeons are often able to preserve residual hearing during cochlear implant surgery using the soft surgery technique. Conclusions: Preservation of residual hearing is an important consideration on cochlear implantation in the light of changing selection criteria for cochlear implant candidates, and as younger children are receiving implants. This is important, as we do not know yet the long-term effects of inner ear damage due to traumatic insertions of electrodes. This finding suggests a good prognosis for future possibilities of re-implantation.

Abstract:

The purpose of this study was to compare postlingually deafened cochlear implant recipients and normal-hearing adults on timbre (tone quality) recognition and appraisal of 8 musical instruments representing 3 frequency ranges and 4 instrumental families. The implant recipients gave significantly poorer ratings than did the normal-hearing adults to those instruments played in the higher frequency range and to those from the string family. The timbre measures were weakly correlated with speech perception measures, but were significantly correlated with 3 cognitive measures of sequential processing.

Abstract:

A new generation of cochlear implant electrodes has been designed to position the stimulating contacts close to the modiolus in order to reduce power consumption and increase stimulation selectivity. The purpose of this study was to assess electrode position in the cochlea for three recently designed electrodes. Fifteen cadaveric temporal bones were implanted with one of three perimodiolar electrode arrays: Nucleus Contour, MED-EL COMBI40+PM (developmental version); and Clarion HiFocus II. Image-enhanced videofluoroscopy and computer morphometrics were used to assess stimulating contact position relative to the modiolus. The mean distance (+ 1 standard deviation) to the modiolus for all electrode contacts was 0.33 (+ 0.24), 0.30 (+ 0.27) and 0.16mm (+ 0.19) for the Contour, COMBI40+ PM and HiFocus II arrays respectively. In addition, dynamic videofluoroscopy was used to correlate device-specific insertion characteristics with contact-to-modiolus distance. All three devices were successful in terms of locating electrode contacts very close to the modiolar wall.

Abstract:

Hypothesis: This study investigated whether pressure changes common to scuba diving and to hyperbaric oxygen therapy would not cause crush damage or leakage from critical seals in commercially available cochlear implants. Background: The implanted packages of cochlear implants are susceptible to electrical failure caused by leakage from critical seals and to crush injury when exposed to changing barometric pressures encountered in recreational

Abstract:
Background: There are no satisfactory, non-invasive techniques currently available to visualise the cochlear implant (CI) electrode in a dynamic state as it is advanced inside the cochlea. Objective: this study describes a radiologic technique that can be used in temporal bones to monitor the electrode position in real time and to visualise the basilar membrane. Methods: A cochleostomy was performed in accordance with the normal procedure for cochlear implantation in seven fresh cadaveric temporal bones. A special x-ray tube (Microfocus, Wunstorf, Germany) with a spot size of 1mum and fluoroscopy were used for continuous videotape imaging of the advancing electrode in the cochlea. Conventional electrodes (MED-EL C40+, MED-EL, Innsbruck, Austria) and prototypes of perimodiolar electrodes (MED-EL), with varying thicknesses and angles of insertion, were used for the study. Finally, contrast liquid (Ultravist, Belex Imaging, Schering, Germany) was injected into the scala vestibuli through the stapes footplate. Results: The advancing electrode carrier was clearly visible at x20 magnification. With the perimodiolar electrodes, deep insertion was impossible if the guiding wire was too rigid, and retraction occurred if the wire was soft. The intact nature of the basilar membrane could be confirmed by the sequential filling of scala vestibuli and scala tympani. Conclusion: To our knowledge, this is the first non-invasive study demonstrating continuous visualisation with high-resolution and x-ray magnification of CI electrode movements.
advancement inside the intact cochlea. Our technique can be used for the development of CI electrodes with optimal design characteristics, especially stiffness. Visualisation of the basilar membrane will influence the insertion techniques when CIs are developed for patients with residual hearing.

Abstract:
Objective: Objective measurements can be helpful for cochlear implant fitting of difficult populations, as for example very young children. One method, the recording the electrically evoked compound action potential (EAP), measures neural recruitment in the cochlea in response to stimulation through the implant. For coding strategies implemented at a moderate stimulation rate of 250pps per channel, useful correlations between EAP data and psychophysical data have already been found. With new systems running at higher rates, it is important to check these correlations again. Design: This study investigates the correlations between psychophysical data and EAP measures calculated from EAP amplitude growth functions. EAP data were recorded in 12 Ineraid subjects. Additionally, behaviour thresholds (TH) and maximum acceptable loudness levels (MAL) were determined for stimulation rates of 80pps and 2,020 pps for each electrode. Results: Usefull correlations between EAP data and psychophysical data were found at the low stimulation rate (80pps). However, at the high stimulation rate (2,020 pps) correlations were not significant. They were improved substantially, however, by introducing a factor that corrected for disparities due to temporal integration. Incorporation of this factor, which controls for the influence of the stimulation rate on the threshold, improved the correlations between EAP measures recorded at 80pps and psychophysical MALs measured at 2,020 pps to better than r = 0.70. Conclusions: EAP data as such can only be used to predict behavioural THRs and MCLs at low stimulation rates. To cope with temporal integration effects at higher stimulation rates, EAP data must be rate corrected. The introduction of a threshold-rate-factor is a promising way to achieve that goal. Further investigations need to be performed.

Article in German

Abstract:
Background: The goal of this study was to compare the auditory behaviour of bilaterally implanted children while using both CIs to their auditory behaviour during the time when they were using one CI. Methods: for this purpose a questionnaire looking at different aspects of hearing such as hearing in background noise, in complex listening situations and directional hearing was developed. The questionnaire was completed by parents of 28 bilaterally implanted children. They were instructed to state their judgement or their child’s judgement. The parents were instructed to state their judgement or the behaviour of the children. The parents scaled their judgements using a method of extended category scaling similar to that applied in the loudness scaling with the Würzburg hearing field. Each of the five verbal categories was subdivided into 10 numerical subdivisions, so that the parents were able to express judgements lying between the different categories. Results: Eight out of eleven items showed that hearing with bilateral CIs was significantly better than with one CI (p<0,003). The two items, which did not show a significant difference between the two conditions were those related to the interest in auditory rehabilitation and to aversion to noise. Conclusions: The questionnaire has proven to be a useful instrument to assess the quality of hearing in children. The possibility of bilateral implantation should be considered during the decision process prior to implantation.

Abstract:
Cochlear implantation is a viable treatment for patients with severe to profound hearing loss. We report the results of speech perception tests (numbers, monosyllables, and sentence tests) achieved with MED-EL’s COMBI 40+ (C40+) cochlear implant after 12 months of use. These findings, which were taken from a larger German study, were similar to those of other studies of the C40+ implant. We also compared the differences in speech perception observed with the CIS PRO+ body-worn speech processor and the newer TEMPO+ behind-the-ear speech processor. Although these results were similar with respect to most of the measured parameters, the TEMPO+ processor had a distinct advantage during tests in noise.

Proceedings from the 3rd Congress of the Asia Pacific Symposium on Cochlear Implant and Related Sciences.
Backous DD & Hochmair ES Specific considerations for determining safety with MRI use in cochlear implant patients

Borkowski G, Hilmann H & Stark T Surgical aspects of cochlear implantation in young and very young children

Backous DD, Comer L, Bishop R & Balko K Preliminary results using a two-staged technique for cochlear implant insertion in a patient with bilateral fenestration cavities

Singh RS & Shanks MS Cochlea implants in abnormal cochlea

Schenk BS, Hamzavi JS, Moosmüller S, Baumgartner WD & Deutsch WA The effect of auditory feedback on the production of fricatives and sentence duration after cochlear implantation

Hamzavi JS, Schenk BS, Moosmüller S, Baumgartner WD & Deutsch WA The effect of auditory feedback on the production of vowels after cochlear implantation

Au DK, Hui Y, Wei W & Wong BY Speech recognition between bilaterally and unilaterally cochlear implanted and hearing-aid fitted users

Kiefer J, Tillein J, von Iberg C, Pfennindorf T, Stürzbecher E, Klinke R & Gstöttner W Fundamental aspects and first results of the clinical application of combined electric and acoustic stimulation of the auditory system

Abstract:
Cochlear implants are an accepted means for the treatment of profound bilateral deafness. Magnetic resonance imaging (MRI) is gaining more and more importance as a diagnostic tool. It is therefore very likely that cochlear implant wearers will, at some point in their life, become MRI candidates. This makes a discussion of MRI safety of cochlear implants a most timely subject. With the C40/C40+ system as an example, all the major and potentially troublesome interactions are discussed, as well as the conditions for safe conduct of MR examinations with cochlear implant wearers. For the C40/C40+ systems, safe MR imaging is possible with 0.2 Tesla, 1.0 Tesla and 1.5 Tesla scanners.

Abstract:
Objective: The goal of this investigation was to provide evidence that magnetic resonance imaging (MRI) can be performed safely and effectively on cochlear implant patients who require diagnosis of additional diseases. Study design: A retrospective study was performed over 5 years. In a total of 300 patients with cochlear implants at the authors’ centre, MRI was performed whenever it was medically indicated. Setting: All patients underwent scanning in a Philips Gyroscan T10-NT MRI machine, using commercially available Powertrac 300 software. Patients: All patients with cochlear implants for whom MRI was indicated (n=30) were included in this study. They had a wide variety of conditions necessitating MRI, including cervical discus prolapse, hypophyseal adenoma, epipharynx carcinoma, knee degeneration, parotid tumour and pre-operative evaluation for re-implantation and bilateral implantation. Results: No adverse effects from MRI were reported by any of the patients. The cochlear implants all retained their function. All images were of diagnostic value. Because of the MRI, the patients did not need to undergo additional, more invasive and expensive diagnostic procedures. Examples of MRI images from 5 patients are shown. Conclusions: MRI on cochlear implant patients, using the MED-EL COMBI 40 and Nucleus mini series 22 at 1 Tesla, can be a safe procedure. Removal of any magnet is not necessary.

Article in German

Abstract:
A case study of a deaf-blind patient implanted with the COMBI 40+ cochlear implant is presented. The patient is a 70-year-old woman who has been blind since the age of 40. Since 1977 the hearing loss continuously increased. Before surgery she had a very small residual hearing (with hearing aid: 40% speech intelligibility with four syllable numbers) and she used Braille and finger spelling on her hand to communicate with other people. The patient has a high intelligence and so she did not have any problems when the speech processor was fitted and during the hearing therapy. After one month she had open-set speech recognition. The quality of her life is much better than before surgery. The communication by fingerspelling on her hand is not necessary any longer.

Abstract:
This study was done to investigate the effect of a multichannel cochlear implant on speech perception and the functional benefit of cochlear implantation in Finnish-speaking postlingually deafened adults. Fourteen subjects were enrolled. Sentence and word recognition were studied with open-set tests auditory only. One year after implantation, the listening performance was assessed by case histories and interviews. Before implantation for subjects with a hearing aid, the mean recognition score was 38% for sentences and 17% for words. One year after switching on the implant, the mean recognition score was 84% for sentences and 70% for words. Before implantation, the majority of the subjects were not aware of environmental sounds and only a few were able to recognise some environmental sounds. One year after switching on the implant, the majority of the subjects were able to use the telephone with a familiar speaker. All the subjects were able to recognise speech auditory only and had thus gained good functional benefit from the implant.

Abstract:
During the last two decades, cochlear implants have been available for profoundly hearing-impaired patients who do not benefit from conventional hearing aids. The quality of life of these implantees has not been extensively studied, and has not been studied at all in Finland. To assess their quality of life, the Nottingham Health Profile questionnaire was sent to all adult implanted patients in Finland. Implantees tended to have more favourable average pain, emotional reaction and mobility indexes in each age group studied than the average population. Social-isolation seemed to be more common in the youngest and oldest groups of implantees. Apparently, implantees are physically healthier than the average population. However, a bias caused by the strict selection of implant candidates cannot be excluded.

Abstract:
This study was done to investigate the effects of a multichannel cochlear implant on phoneme perception in Finnish-speaking postlingually deafened adults. Phoneme recognition was studied with 100 pre-recorded nonsense syllables (open-set) presented at 70dBSPL, auditory only, in the free-field situation. Ten subjects were tested before implantation both with and without a hearing aid (HA), and 3, 6 and 12 months after switching on the implant. Before implantation without a HA, the subjects did not recognise vowels, consonants or syllables. Four of the subjects used a HA before implantation, and the mean recognition scores of these subjects were 34% for vowels, 28% for consonants and 13% for syllables. One year after switching on the implant, the mean recognition scores were 77% for vowels, 66% for consonants and 46% for syllables. According to phonological analysis vowels appear to be easier to perceive than consonants during the first stage after multichannel cochlear implantation.

Abstract:
This study was done to survey the effect of cochlear implantation on hearing level, speech perception and listening performance in Finnish-speaking adults. The subjects of the study comprise 67 adults. Pure-tone thresholds (0.125-8kHz), word recognition and listening performance were studied before and after implantation. After switch-on of the implant, the median values of PTA (0.5-4kHz) in the sound field were fairly stable across the evaluation period. Three months after switch-on of the implant, the mean word recognition score was 54%. There was clear improvement in the word recognition scores over a longer period of time, the mean score being 74% 24
months after switch-on. Six months after switch-on, the majority of subjects (40/48) were able to recognise some speech without speech reading, and 26 of these 48 subjects were able to use the telephone with a known speaker, gaining good functional benefit from the implant.

Abstract:
Developing a cochlear implant programme is one of the most difficult problems we need to solve concerning young children. Application of cochlear implants to this group of patients gives hope for better speech and language development than using conventional hearing aids. Children compromise about 40% of all implanted patients at the Institute of Physiology and Pathology of Hearing in Warsaw. They are provided with different types of cochlear implants, 16 of which are included in the international comparative study EARS (Evaluation of Auditory Responses to Speech). In this paper results are presented of auditory speech perception in pre-, peri- and postlingual children using the multichannel cochlear implant systems COMBI 40 and 40+. All the children were regularly evaluated following the EARS procedure with a number of perception tests. Monitoring of auditory perception development is fundamental and allows prognosis of speech and language development in children.

Abstract:
It is possible for most post-lingually deafened patients to attain significant open speech recognition following cochlear implantation. In contrast, many severely-profoundly sensorineural hearing-impaired patients receive no benefit from their hearing aids, especially in situations with background noise. The aim of the study was to evaluate the speech recognition ability in quiet and in noise of post-lingually deaf adults implanted with COMBI40/40+ cochlear implants versus severely-profoundly sensorineural hearing-impaired patients fitted with hearing aids. For this purpose, we tested two groups of patients: one that had received cochlear implants (n=22) and a group of subjects with severe-profound sensorineural hearing impairment, fitted with hearing aids (n=15). All of the patients were tested using the Hochmair, Schultz and Moser discrimination test in quiet and noise. The results of the study demonstrate that most of our cochlear implant patients received a substantial benefit from their implant, achieving scores of 70 to 100% (mean, 90%) for the numbers test and 10 to 72% (mean, 43%) for the monosyllable test 1 year after implantation. Even in situations with background noise, scores of 1 to 99% (mean, 45.65%) for a signal to noise ratio (SNR) of +15dB 1 year following the implantation improved to 7 to 95% (mean, 50.7%) at 2 years and 8 to 99% (mean, 60%) at 3 years after implantation. These results are significantly (p<0.04) superior to the hearing aid patients’ scores of 1 to 64.2% (mean, 26.7%) for a SNR of 15dB. The results of the present study may have clinical implications in regard to selection of candidates for cochlear implantation.

Abstract:
Perimodiolar-positioned cochlear implant electrodes have been developed in order to bring the electrode contacts as close as possible to the spiral ganglion cells, which are the target of electrostimulation. This results in lower electrical thresholds, higher dynamic ranges and less channel interaction when compared with normal implant electrodes, which are usually located peripherally within the scala tympani. In this study we evaluated 4 different types of perimodiolar electrode: the Clarion Performed electrode, the Clarion Performed electrode with positioner, the Nucleus Contour electrode and the MED-EL Perimodiolar COMBI 40 electrode. These devices require different approaches to achieve a perimodiolar electrode position. The electrodes were inserted in fresh human temporal bones. After processing these bones with these electrodes in situ by employing a sawing, grinding and polishing technique, the inner ears structures as well as the electrode positions could be evaluated in detail. All electrode types studied had a more or less perimodiolar position; however, each type produced a certain amount of trauma to cochlear structures, which is discussed in relation to mechanical properties. Further human temporal bone studies with improved perimodiolar cochlear implant electrodes are necessary in order to find an optimised type of electrode.

Abstract:
The study was conducted to compare the new MED-EL TEMPO+ ear-level speech processor with the CIS PRO+ body-worn processor in the COMBI 40/COMBI40+ implant system. Speech tests were performed in 46 experienced subjects in two test sessions approximately 4 weeks apart. Subjects were switched over from the CIS PRO+ to the TEMPO+ in the first session and used only the TEMPO+ in the time between the two sessions. Speech tests included monosyllabic word tests and sentences via the telephone. An adaptive noise method was used to adjust each subject's scores to approximately 50%. Additionally, subjects had to complete a questionnaire based on their 4 weeks of experience with the TEMPO+. The speech test results showed a statistically significant improvement in the monosyllabic word scores with the TEMPO+, indicating some learning in his task. In the questionnaire, the vast majority of subjects found that the TEMPO+ allows equal or better speech understanding and rated the sound quality of the TEMPO+ higher. All these objective and subjective results indicate the superiority of the TEMPO+ and are mainly attributed to a new coding strategy called CIS+ and its implementation in the TEMPO+. In other words, based on the results of this study, it appears that after switching over from the CIS PRO+ to the TEMPO+, subjects are able to maintain or even improve their own speech understanding capability.

Abstract:
BACKGROUND: The movements of the electrode cable of a cochlear implant inside the cochlea during the insertion procedure generally are invisible, even in temporal bone experiments. Yet, the development of new designs of electrodes, their positioning near to the modiolus etc requires an exact knowledge of the dynamic behaviour of the electrodes inside the cochlea. The exclusive method for looking through the undamaged cochlea is by x-ray technique. METHODS: A specific x-ray tube with a focal spot size of barely 5 microns allows useful direct magnifications of more than 20-30 times. We performed temporal bone experiments with this tube and studied the behaviour of conventional and perimodiolar electrode cables of MED-EL CI during the insertion procedure under fluoroscopic viewing. RESULTS: The high-resolution imaging revealed the influence of stiffness of the electrode cable on the insertion depth of a conventional electrode. If the angle of the direction of insertion was too steep, the resulting kinking of the cable at the basal wall was immediately visible. The direct visualisation of the movements of the cable was useful in optimising the design and stiffness of various prototypes of perimodiolar electrodes for deep insertion. CONCLUSIONS: The dynamic examination technique disclosed that the stiffness of actual electrode cables is not optimally adapted to the form of the cochlear cavity for deep insertion. The non-destructive visualisation technique will facilitate the development of advanced electrode design, especially for various concepts of perimodiolar electrodes.

Article in Russian

Abstract:
The paper reports three cases of cochlear implantation using the implant COMBI 40+ produced by MED-EL (Austria). Short-term post-operative testing results demonstrate an appreciable progress in hearing. Changes in speech discrimination and speech production are evaluated.

Abstract:
Use of a telephone and GSM phones, in particular, was assessed by means of a postal interview sent to all adult Finish implantees. The response rate was very high (87%). Fifty-one of 61 respondents used a telephone and 27/61 also used a mobile phone, usually a digital phone. Two GSM phone models from Nokia (3110 and 6110)
were tested with three different cochlear implant systems used by nine patients. Definite characteristics between the processors were found. Nucleus Spectra (2 implantees) could not be used with any of the phones under any test condition. Nucleus Sprint was incompatible with both GSM phone models in a poor field, while GSM phone model 6110 could be used in a good field. The MED-EL COMBI 40+ processor was compatible with both GSM models tested under any condition.

Abstract:

Cochlear implants have become an established treatment and are used by severely to profoundly deaf adults and children in almost every phase of daily life. Electronic designs have improved to meet clinical and research demands, technological developments have made the devices smaller and more reliable, and speech processing research has yielded a series of improvements in patient benefit. The performance of a cochlear implant system is inextricably linked to the engineering of the device. It is important for clinicians to understand how various technological features can affect results. A large amount of information is available; however the rationale for the features is not always substantiated. The features referred to are for devices in regular, clinical use in mid 1999: Cochlear Limited (Nucleus-24), MED-EL (COMBI-40), and Advanced Bionics (Clarion-S) devices. The details are those available from the manufacturers’ manuals, websites, patents and scientific papers. These issues are discussed ignore detail in the chapter on Cochlear Implants for Adults and Children in Audiological Medicine.

Abstract:

Virginia Mason Medical Centre is participating in the United States Food and Drug Administration (FDA) trial of MED-EL COMBI 40+ (C40+) cochlear implant system. The trial is to demonstrate safety and effectiveness with postlingually deafened adults, adults deafened prior to 6 years of age (prelingual), and children as young as 18 months. Fourteen patients have been implanted to date, 2 children have compressed arrays due to ossification of the cochlea as a result of meningitis. All 12 standard arrays are inserted beyond 29mm. There have been no device failures, and one minor flap complication treated conservatively. Up to 6-month data is presented. All patients use Continuous Interleaved Sampler (CIS). Two pre-lingually deafened adults and 1 child have not yet been activated.

Abstract:

None

Abstract:

Objectives: To verify the necessity for special surgical techniques or clips for fixation of the electrode cable of a cochlea implant against dislocation, and to test the stability of postoperative biologic cicatrisation as the sole and solid anchoring of the cable. Material: Temporal bone experiments with a simulated connective tissue sheath around conventional (MED-EL COMBI 40+) and prototype (profiled surface) cables. Results and conclusions: the electrode cable is anchored securely in a sheath of scar tissue, since unphysiological loads are needed for pulling it out if its anchorage. The drag during one extraction trial with a profiled cable even resulted in the rupture of the cable. These results confirm our confidence in this biologic fixation of the electrode cable inside its postoperative cicatric tissue sheath. More than 80 cochlear implantations with the electrode simply embedded in a drop of fibrin glue in the posterior tympanotomy never demonstrated a shift of the electrodes in the last 8 years. Therefore, special fixation of the electrode cable with clips or surgical techniques is not necessary.

This study was done to examine the short-term and long-term effects of multichannel cochlear implantation on speech perception in Finnish-speaking adults. The subjects comprise 20 adults. Pure-tone thresholds (0.125-8kHz), discrimination of phoneme quantity, sentence recognition, word recognition, phoneme recognition and
listening performance were studied before and after cochlear implantation. After switch-on of the implant, the median pure-tone threshold values in the sound field were comparable to the level of mild hearing impairment. Most improvement in sentence recognition took place during the 6 months after switch-on (mean score 74%). In word recognition, most improvement took place during the 12 months after the switch-on (mean score 66%), and clear improvement was noted even thereafter. In phoneme recognition, the performance of the subjects improved over the entire follow-up period and 24 months after the switch-on the mean score was 52%. Individual variation was seen in the performance of the subjects. With 3 months of listening experience, all subjects were able to recognize some speech without speech reading, and they gained good functional benefit from the implant. The use of speech recognition tests with different degrees of difficulty is essential for the follow-up of adult cochlear implant subjects.

Abstract:
None

Abstract:
The aims of this study are to report on our experiences using a bone pate (a mixture of bone dust and fibrin glue) fixation technique of the COMBI40/COMBI 40+ electrode array during cochlear implant surgery. A retrospective study involving 57 patients implanted with the COMBI 40/ COMBI 40+ cochlear implants over 31 months fixated with bone pate was performed, utilising our electrical fitting data as well as re-operation and X-ray findings. We found no signs of electrode retraction in any of the 57 patients. Electrical fitting data showed no reduction in the number of active channels between the first and last times patients were evaluated (a period of 4 – 31months). Furthermore, a comparison of X-rays performed within the first week following cochlear implant surgery and again 7 – 27 months later showed no signs of electrode retraction in 10 patients. Three patients who required re-operations after implantation allowed us the opportunity to examine the effectiveness of the bone pate fixation and revealed new bone growth with the electrode fixed in place. Histological examinations of the newly built bone showed laminar and compact bone structures. The use of bone pate was thus found to be a suitable method of electrode fixation in cochlear implant surgery. Compared with other fixation methods, it is inexpensive and uses no foreign materials.

Abstract:
The goals of this study were to report mean values of speech perception performance in prelingually deaf children implanted with a COMBI 40/40+ cochlear implant. A total of 31 patients were included in the study. The time span ranged over 3 years, during which time the Evaluation of Auditory Responses to Speech (EARS) test battery was used with the children. The EARS battery contains four measures of closed-set speech perception and three open-set tests. The mean test results exhibited steady improvement on all parts of the EARS test battery, even up to 3 years post-implantation. The preoperative scores for the Listening Progress Profile (LiP) were 4%, rising to 93% at 36 months post-implantation. Results for the open-set testing measures were most encouraging, with some children reaching fairly high levels of speech perception, receiving scores as high as 100%, by the 36 month evaluation. The congenitally and prelingually deaf children in our study showed continuous improvement in both closed and open set speech perception following cochlear implantation, although variability individual performance among the children was noted.

Abstract:
None

Abstract:
The performance of children who receive a cochlear implant may be dependent on both the age at implantation and the amount of experience with the implant. In this study we investigated changes in auditory perception and speech identification with experience in 71 children who had received a cochlear implant. The children were divided into 3 groups, those above and below 7 years of age at the time of implantation and those 3 years or younger deafened by meningitis. The children received either the Nucleus 22, Nucleus 24 or the MED-EL C40+ implant. The test material was a reduced form of the EARS evaluation protocol developed by MED-EL into a multi-language format. Tests were performed pre-operatively, within 2-5 days of first fitting of the speech processor, then at 1, 3 and 6 months and every 6 months thereafter for a total period of 24 months. The results indicated that all children showed improvement after 6-12 months. The rate of improvement differed between age groups. Children over 7 years of age had preoperatively higher test scores than younger children, presumably because of previous experience with hearing aids. These children showed an immediate post-operative drop in performance that recovered 1-3 months later. Children under 7 years started at lower performance levels but approached those of the elder children after 12 months of CI use because their post-operative drop was less significant and their performance improved faster. Children who had been deafened by meningitis and had been implanted at the age of three or less made little progress over the first 6 months but approached test levels of the under-7 year olds by 18 months or later. All three components of the evaluation protocol employed, the Listening Progress Profile (LiP), the Monosyllabic-Trochee-Polysyllabic Test (MTP) and the Meaningful Auditory Integration Scale (MAIS) proved to be valuable in demonstrating improvement in performance of CI children in all age groups once the immediate post-operative drop had been overcome.

(Preoperative diagnostic procedures before cochlear implantation)
Article in German
Abstract:
About 200 patients are considered each year for cochlear implant recipiency. Only ¼ of these candidates actually receive an implant. The aim of this study is to discuss the pre-operative procedure we use, which is aimed to exclude patients who would not benefit from an implant. A cochlear implant is an example of very expensive high-profile medical therapy, a single implant costing about 280 000 Austrian shillings. The aim of the pre-operative diagnostic procedure is to select the right patients, with a view to providing the best audiological outcome. During the past 20 years, important parameters have been identified to determine suitable patients. Candidates for a cochlear implant are infants and children (independent of the aetiology of deafness or high grade hearing loss), as well as post-lingual deaf adults. Congenitally deaf adults or teenagers are considered unsuitable to receive an implant.

(Clinical utilisation of magnetic resonance imaging for patients with cochlear implants.)
Article in German
Abstract:
To date, MR imaging is absolutely contraindicated in cochlear-implanted patients. The aim of this study is to document the potential value of MR imaging in such patients, without injurious or side effects and without technical device failure. After in vitro experimental testing, 25 cochlear-implanted patients underwent MRI. Radiological evaluation was also possible. The use of 1-Tesla fast spin echo sequences minimised artefacts. All cochlear implants were still in working order; no changes in fitting data or a reduction in speech understanding were observed. MR helped to avoid other invasive medical procedures.

Abstract:
None
The aim of this paper is to provide an overview of the cochlear implant. The history of this entity is traced from the early development of implants, involving the stimulation of the hearing nerve, up to the currently available standard multichannel implants. The physiological background is also elucidated. A cochlear implant consists of an implantable portion, which lie within the ear, and of parts worn externally on the body. Differences between the first implants and those now in use are as follows: transcutaneous information and energy transmission, the position of the electrode in the ear, and the configuration of the electrode. Differences between the currently available implants mainly concern the number of electrodes, speech coding strategies and the mode of electrode stimulation. A cochlear implant consists of an implantable portion, which lie within the ear, and of parts worn externally on the body. Differences between the first implants and those now in use are as follows: transcutaneous information and energy transmission, the position of the electrode in the ear, and the configuration of the electrode. Differences between the currently available implants mainly concern the number of electrodes, speech coding strategies and the mode of electrode stimulation.
stimulation. Almost all of the most recent implants are equipped with electrodes that are implanted in the tympanic scale of the cochlea.

Abstract:
The aim of this study was to measure the speech discrimination performance of post-lingually deaf patients using the COMBI 40/40+ cochlear implant (MED-EL, Innsbruck). The speech performance of 37 adults was tested over a time span of three years. We used a standardised test battery comprising number, monosyllable, sentence, consonant and vowel discrimination tests. Testing was performed immediately after initial fitting and 1,3,5,12,24 and 36 months thereafter. The average correct answers for all tests were as follows: right after the implantation 29.1%, after 1 month 46.7%, after 3 months 53.9%, after 1 year 63.5% and after 3 years 68.5%. Some patients reached a number discrimination rate of 100%. The discrimination for monosyllables averaged 41.1% two years after implantation. The results demonstrated continuous improvement of speech perception, even after three years following implantation.

Abstract:
The aim of the study was to report the current surgical procedure that has been established on the basis of about 200 implantations with the COBI 40/40+ implant system. The outstanding features of this procedure are the skin incision and the fact that the electrode can be inserted to a depth of 34mm into the cochlea. In order to provide better magnetic positioning of the external parts, a flap-reducing technique may be required. For insertion we used a soft surgery method to preserve structures within the cochlea. In some cases we were able to inspect the cochlea with microendoscopes, which helped to prevent electrode kinking, since fibrous obliterations were found before the insertion. For electrode fixation in the mastoid cavity we used bone plate.

Abstract:
The goal of this study is to report mean values of speech perception performance in prelingually deaf children who received a COMBI 40/40+ cochlear implant. Thirty-one patients were included in the study. The time span ranged over 3 years, during which time the Evaluation of Auditory responses to Speech (EARS) test battery was used in the children. The EARS battery contains 4 measures closed-set speech perception and 3 open-set tests. The mean test results exhibited steady improvement in all parts of the EARS test battery, even up to 3 years post-implantation. The mean preoperative scores were 0.3%, increasing to 92.3% at 36 months post-implantation for the best children. Results for the closed-set testing measures were most encouraging, with some children reaching fairly high levels of speech perception and achieving scores as high as 98.7% at the 36 month evaluation. The congenitally and prelingually deaf children in our study showed continuous improvement in both closed and open set speech perception following cochlear implantation, although individual variations in performance were noted.

Abstract:
The insertion of cochlear implant electrodes in human temporal bones may be associated with the destruction of structures within the cochlear. The aim of this study was to measure such insertional trauma by means of histological processing of implanted human temporal bones following implantation of a COMBI40/40+ electrode array (MED-EL, Innsbruck). We implanted 6 human temporal bones with original electrodes (3 with COMBI 40 and 3 with COMBI 40+). In 4 bones Healon was used for electrode insertion. The histological investigation was performed after radiographic evaluation of the position of the electrode. For the histological procedure we used a technique, which keeps the electrodes in position within the cochlea. In these slides we could clearly identify the electrodes in the tympanic scale. When inserted properly (point of first resistance) no trauma occurred in the basal portion of the cochlea and minimal trauma in the middle portion of the cochlea.

Article in German.

Abstract:
The aim of the study was to evaluate the speech discrimination ability of post-lingually deaf adults implanted with the COMBI40+ cochlear implant in noise and to compare the results with the speech discrimination ability of patients provided with hearing aids. The 12-month post-operative hearing performance of 12 consecutive patients was tested using sentence discrimination tests in quiet and noise. The results of the present study demonstrate that all patients obtained substantial benefit from their implants even in situations coupled with noise. The speech understanding of cochlear-implanted patients appears to be better than that of patients provided with hearing aids. Very high scores (mean 40.2%) were achieved at a signal-to-noise ratio of 15dB.

Abstract:
Cochlear implantation has been performed for almost two decades at the Vienna University Hospital. Until 1994, single-channel implants were used (Ball-Electrode, SC6/2SC6, Vienna/Epoxy, MED-EL, Innsbruck, Austria). The development of multi-channel devices (Combi40/40+), which provide significantly improved speech recognition performance, led to the re-implantation of some patients who had previously received single-channel implants. It was of particular interest to find out if there was a deterioration of the central “learning process” by the re-implantation from the analogue single-channel device to the tonotopic pulsatile multi-channel stimulation. In this study, we attempted to demonstrate that single-channel devices have an impact on the neural organisation of the auditory system. Two groups of post-lingually deaf adult patients were tested. Group A had previously received single-channel implants and were re-implanted with the new COMBI 40/40+ cochlear implant (MED-EL, Innsbruck, Austria) in the same ear. Group B was implanted only with the COMBI40/40+. Six different speech recognition tests were subsequently performed on all patients, and the two groups performed similarly. Furthermore, it was discovered that group A obtained a significant speech recognition improvement (p<0.05) with monosyllabic words and number tests 1month following re-implantation.

Abstract:
Objective: To document progress and benefit of multi-handicapped children using cochlear implants. Design: The Evaluation of Auditory Responses to Speech (EARS) test battery was performed on the children in this study at regular intervals following implantation. All children went through individually tailored intensive audiological rehabilitation programmes following cochlear implantation. Results: Individual results from ten multi-handicapped children receiving cochlear implants are presented in this paper. The majority of children in this study are successful implant users. Whenever possible, test scores are included as well as subjective case reports. Conclusion: Providing multi-handicapped children with cochlear implants can result in substantial benefit for both the child and parents. Multi-handicapped children are not contra-indicated for cochlear implantation, although not all are considered to be good candidates.

A perimodiolar electrode based on the MED-EL C40+ multichannel implant has been designed. A unique positioning paradigm conforms the array to the inner wall of the scala, regardless of cochlear size, insertion depth, and ear side. In vitro and in situ data confirm that the minimally invasive electrode is easily implantable, explantable, reimplantable. Prior to insertion, the outer structure of the array is indistinguishable from the original electrode. Surgical procedure and cochleostomy size is unchanged.

Abstract:
None

Abstract:
None

Abstract:
None

Abstract:
Speech tests have been performed on 6 subjects for comparing the standard 12-channel continuous interleaved sampling (CIS) strategy (CIS12), the 7-channel CIS strategy (CIS7) and the 7-of-12 strategy in the MED-EL COMBI40+ system. An ABAB experimental design was used whereby each strategy was reversed and replicated. Speech tests were performed in quiet (vowels, consonants, monosyllables, sentences) and noise (sentences). Results showed that for vowels, CIS12 is significantly superior to CIS7, for consonants and sentences CIS23, CIS7 and 7-of-12 performed equally well, and that for monosyllables 7-of-12 is significantly superior to CIS 7 by almost the same amount as CIS12, but in this case the difference is not significant. Further, all strategies have been found to be equally robust in noise with respect to sentence understanding. The differences between CIS12 and 7-of-12 on the one hand and CIS7 on the other may be attributed to decreased spectral resolution of the latter. The fact that, in contrast to what has been reported for the SPEAK strategy, 7-of-12 is equally robust in noise as the CIS strategies is explained by the use of higher stimulation rates, wider frequency bands and a higher percentage of channels stimulated in each cycle.

Abstract:
We herein present our preliminary experience with functional MR imaging of the direct electrical stimulation of the auditory nerve using an MR imaging-compatible electrode placed in the external auditory meatus of five patients with binaural sensorineural hearing loss. The stimulator was placed outside the imager’s bore, and the electrode produced virtually no susceptibility artefacts. In three of five patients, it was possible to activate the superior temporal gyrus during functional MR imaging. No side effects were observed.

Abstract:
With cochlear implants, magnetic resonance imaging (MRI) has until recently been contraindicated due to excessive magnetic and electromagnetic interference. The aim of this study was to determine the MRI compatibility of the MED-EL COMBI 40/40+ cochlear implant, within a wide range of clinical MRI applications. In vitro experiments on a 1.5T MR scanner were performed. Torque, force, demagnetisation, artefacts, induced voltages and temperature increase were measured in worst-case scenarios for the implant. In addition, stabilization experiments were performed. It was shown that most of the electromagnetic interferences between the cochlear implant and the 1.5T scanner remained within acceptable limits. One exception is the torque on the
internal magnet, which represents a hazard for patients with these cochlear implants. Therefore, MRI examination should only be performed if there is a strong medical indication, and certainly some assessment of the relative risks involved versus the risk of not providing the diagnostic capabilities of MRI, will have to be made. Appropriate safety measures should be taken.

Abstract:
Nine patients with profound bilateral hearing loss received a cochlear implant via the middle fossa. Subjects presented with a bilateral radical mastoidectomy cavity, fibro-adhesive otitis media, autoimmune inner ear disease, previous cranial trauma, and genetic prelingual deafness. A classic middle fossa approach was adopted. A small cochleostomy was performed on the most superficial part of the basal turn. A Nucleus 24M cochlear implant system (Cochlear Corporation) was inserted in four patients, a Lauraflex implant (Philips hearing implant) was used in three patients and a COMBI 40+ (MED-EL) with a double electrode array in two. The receiver stimulator was positioned in a bone well previously drilled in the temporal squama and the electrode carrier was inserted in the fenestrated cochlea. Speech perception tests, performed over a period of time ranging from one to six months after cochlear implant activation, yielded better results in these patients compared with those obtained in postlingually deaf patients operated on via the traditional transmastoid route. Cochlear implant insertion via the middle fossa approach is a technique which is suitable for auditory rehabilitation of subjects with a bilateral radical mastoidectomy cavity; chronic middle ear disease, patients suffering from middle ear malformations, and patients with partial obliteration of the cochlea in the basal turn. However, the main advantage of middle fossa cochleostomy consists in the possibility of stimulating areas of the cochlea, i.e. middle and apical turns, where a greater survival rate of spiral ganglion cells is known to occur. This new approach led to major improvements in speech recognition in all patients compared with patients operated on via the transmastoid approach and thus, given the present state of the art, it is the only approach which allows stimulation of the entire cochlea and enables the best auditory outcomes to be achieved in patients with a cochlear implant.

Abstract:
The preliminary results of insertion of a cochlear implant via the middle fossa in nine patients with profound bilateral hearing loss are described. Aetiologies included bilateral radical mastoidectomy cavity, adhesive otitis media, autoimmune inner ear disease, previous cranial trauma, genetic prelingual deafness, and otosclerosis. A classic middle fossa approach was adopted. A small cochleostomy measuring 1.5mm in diameter was performed on the most superficial part of the basal turn. A Nucleus 24M cochlear implant system (Cochlear Corporation) was inserted in four patients, a Lauraflex implant (Philips hearing implant) was used in three patients and a COMBI 40* (MED-EL) with a double electrode array in two. Single electrode arrays were inserted from the cochleostomy to the cochlear apex and occupied a portion of the basal turn, as well as the middle and apical turns. Double electrode arrays were inserted, one towards the apex and one into the basal turn of the cochlea towards the round window. The receiver stimulator was positioned in a bone well previously drilled in the temporal squama and the electrode carrier was inserted in the fenestrated cochlea. The activity of the inserted electrodes was tested by means of telemetry and intra-operative recording of electrically evoked auditory brainstem responses (EABR). Speech recognition tests, performed over a period of time ranging from one to six months after cochlear implant activation, yielded better results in these patients compared with those obtained in postlingually deaf patients operated on via the traditional transmastoid route. Cochlear implant insertion via the middle fossa approach is a technique, which is suitable for the implantation of patients with bilateral radical mastoidectomy cavities, chronic middle ear disease, middle ear malformations, or with partial obliteration of the cochlea in the basal turn. However, the main advantage of inserting the implant through the middle fossa cochleostomy consists in the possibility of stimulating, with the single array, areas of the cochlea, i.e. part of the basal, middle and apical turns, where a greater survival rate of spiral ganglion cells is known to occur. In addition, with the double array total occupation of the cochlea is possible, providing the possibility of replicating tonotopic organisation of the cochlea. This new approach has led to major improvements in speech recognition in all patients compared with patients operated on via the transmastoid approach and, given the present state of the art, may be the elective approach for optimal implantation outcomes.

A multi-language test battery, consisting of seven different measures was compiled to evaluate auditory perceptual skills of children using cochlear implants. A major goal of the test battery was to allow a standard through which performance comparisons can be made within and across languages. The battery of tests is called the Evaluation of Auditory Responses to Speech (EARS) and is administered in the hearing only condition. The adaptation of EARS for the Dutch language was done by collaboration between Patrick D’Haese of the University Department of Otorhinolaryngology and Head and Neck Surgery of the University Hospital Antwerp (UIA) and Dr Dianne J. Allum-Mecklenburg for the MED-EL company.

Abstract:
The estimation of the maximum comfort loudness levels (MCL) by measurements of the electrically elicited stapedius reflex was examined in six experienced cochlear implant users supplied with the COMBI 40 implant system. The stapedius reflex was tested and loudness scaling was performed simultaneously using an updown stimulation protocol close to the reflex threshold with automated recording of both test procedures. The electrical stapedius reflex threshold (ESRT) and loudness scaling were evaluated separately. Scaling at the reflex threshold ranged between normal and loud. The range of stimulus intensities corresponding to ESRT is much smaller than at a particular loudness category. The overall correlation between ESRT and MCL was high (r=0.92), with a similar dependence of ESRT and MCL on the channel stimulated. Thus, when the stapedius reflex can be detected post-operatively, the ESRT can be applied successfully for the fitting procedure of the speech processor. Simultaneous loudness scaling during the entire reflex test showed that over stimulation via the implant can be avoided effectively.

Abstract:
OBJECTIVE: The purpose of the present study was to gather data on the influence of compression ratio and attack and release times of slow-acting front-end automatic gain control (AGC) systems on speech understanding of cochlear implant users in various listening situations. The data should allow evaluation of the usefulness of front-end AGC in body-worn speech processors. DESIGN: Subjects were 12 experienced postlingually deafened adult users of the MED-EL COMBI 40 multichannel cochlear implant. Six different front-end configurations, including a linear setting, the standard AGC of the MED-EL COMBI40 processor, and four slow-acting dual front-end AGCs (use of two instead of one level detector for improved transient handling), were evaluated in two experiments. In experiment 1, tests were performed at 55, 70 and 85dBSPL, roughly corresponding to soft, medium and loud speech. Experiment 2 was intended to evaluate the quality of transient handling of the six configurations. In this experiment, an intense transient “chink” at 100dBSPL was spliced onto the beginning of each sentence (presented at 85dBSPL). RESULTS: At 55dBSPL subjects performed significantly more poorly with the linear setting than with the AGC settings, but no differences in performance could be found for the AGC settings. At 70dBSPL subjects showed the poorest performance with the high compression ratio dual front-end AGCs. No differences in performance of the six front-end configurations were found at 85dBSPL. In the presence of intense chinks, performance of the standard AGC dropped significantly. CONCLUSIONS: The results indicate that slow-acting front-end AGC can be used effectively in speech processors for cochlear implants to expand the range of input levels that are audible for the cochlear implant user, without any need to adjust a processor control, and that incorporation of an additional fast-acting AGC component can improve performance under conditions where intense transients occur.

Abstract:
The programming of a cochlear implant speech processor used by young children is often difficult, especially when the stimulus level associated with maximum auditory loudness (MAL) needs to be determined. Excessively high stimulation should be avoided as this can have atraumatic effect. The aim of this study was to determine if a relationship exists between the intra-operatively determined electrical stapedius reflex threshold (ESRT) and the postoperatively determined MAL and hearing threshold for 27 patients, each having one of three implant types. The question of whether the ESRT provides a practical technique to simplify, improve and accelerate speech processor programming was investigated. For the monopolar stimulation mode used for the MED-EL and Clarion implant systems, the average MAL and threshold was expressed as a percentage of the average ESRT across all electrodes. For the “common ground” stimulation mode used for the Nucleus implant system, a parabolic transformation was used to relate MAL and ESRT to one another. These transformations between MAL values calculated from the ESRT and the actual MAL values, determined psychoacoustically, diverged considerably from one another. Therefore it was not possible to determine the MAL from the ESRT with certainty. The ESRT does, however, provide a means to estimate an approximate upper boundary for the MAL, apart from its use to control implant function. The determination of the exact MAL will still need to be determined using behavioural techniques.

Abstract:
In vitro experiments were performed to determine the compatibility of a cochlear implant at 0.2 and 1.5T magnetic resonance (MR) imaging. Except for the torque at 1.5T, all electromagnetic interferences remained within acceptable limits. MR imaging should be performed only if there is a strong medical indication, by following appropriate safety procedures. MR imaging at 0.2T should be safe; at 1.5T however, the relative risks will have to be assessed.

Abstract:
The recipient of a Nucleus 22 multichannel cochlear implant began to experience severe vestibular stimulation related to the implant. This patient’s experience initiated a study with the objective of determining the frequency of implant-related vestibulo-ocular stimulation. Subjects consisted of 17 randomly selected patients who use cochlear implants. Included in the study were 14 Nucleus 22 and three MED-EL COMBI 40 devices. Stimulation of the implants was performed both by individual channel and with sound-field broadband 80dB noise using the users normal device settings. Eye movements were monitored with infrared videonystagmography. Only one subject, who used a MED-EL COMBI 40, showed a consistent and strong ocular response to cochlear stimulation but had no subjective symptoms. The authors conclude that vestibulo-ocular activation is possible with multichannel cochlear implants but is infrequent and may not be clinically significant.

Abstract:
In patients with some residual hearing and minor benefit from conventional hearing aids, the benefits of cochlear implantation have to be weighed carefully against eventual adverse effects. In this study, pre-and post-operative thresholds as well as functional results after cochlear implantation are reported; 17 of 44 implanted adults had residual hearing pre-operatively (mean threshold 250-4000Hz: 106dBHL) in the implanted ear. Residual hearing in the implanted ear, could not, in general, be preserved post-operatively. Seventeen of 44 implanted children had some amount of residual hearing in the implanted ear pre-operatively (implanted ear: 114dBHL; contra-lateral ear: 109dBHL; mean thresholds 250-4000Hz). Contrary to the results in adults, residual hearing in the implanted ear remained statistically unchanged. Hearing in the contra-lateral ear increased significantly from 109.9 to 101.9dB HL post-operatively. This increase was attributed mainly to maturation of the central auditory pathway. In adults with residual hearing, the monosyllable word recognition scores increased significantly from 9% pre-operatively to 42% post-operatively. Children with residual hearing tended to perform better on speech-related test material compared to children without prior auditory experience. Cochlear implantation is indicated in adults and children with residual hearing and minor benefit from conventional amplification. The contra-lateral ear in children should be considered for additional acoustical stimulation.

Cochlear implants (CI) bypass the external and middle ear and parts of the inner ear, by delivering electrical stimuli to the remaining neural fibres of the acoustic nerve in a meaningful way. Many features of current CI are similar. They are all multi-channel devices with intracochlear placement of the active electrodes and with transcutaneous information and energy transfer. Factors affecting the auditory performance of CI patients are patient-linked factors and device factors. An overview is given of key design parameters, processing characteristics and specifications of the following CI platforms: Clarion S-Series, COMBI 40 and COMBI40+, Digisonic DX10, Laura-Flex and Nucleus CI22 and CI24M. These data, combined with outcome parameters can enhance the information of CI teams, patients or parents of children in their decision making process when faced with a hearing impairment to such an extent that hearing aids are of little or no benefit.

Abstract:
PURPOSE: Our aim was to evaluate the MR compatibility of MED-EL cochlear implants by performing in vitro and in vivo tests. METHOD: All experiments were done on a 1.0T machine. Potential movements of the cochlear electrode relative to a scale were recorded. Potential dislodgement of the magnetic receiver coil was evaluated with the coil fixed to the retroauricular skin of a volunteer. Temperature changes were measured with temperature sensors fixed to the electrode, performing standard MR sequences. In 11 patients, MRI of the brain was performed 1 day before explantation of the devices using standard MR sequences. Testing of the auditory abilities was done before and after the examination. All explanted devices were assessed for function. RESULTS: There was no detectable movement of the electrode or the receiver coil or any temperature change. There were no adverse events for the patients. All 11 implanted cochlear implants retained their function. CONCLUSION: MED-EL cochlear implants are not a firm contra-indication for MRI

Abstract:

None

Abstract:
Objective: to investigate the interrelation between number of channels and stimulation rate in the continuous interleaved sampling strategy (CIS). Subjects and methods: three of the first recipients of the new COMBI 40+ cochlear implant participated in consonant, vowel, number and sentence tests. Speech understanding was evaluated for different combinations of number of active channels from two to twelve and stimulation rate per channel between 1,515 and 9,090 pulses per second. Results: the results indicate that the optimum number of active channels is not necessarily the maximum number of usable channels.

Abstract:
We present the first report on complications of cochlear implantation with the COMBI 40 (MED-EL, Innsbruck). Between January 1995 and May 1996, 325 devices had been implanted by 58 different surgeons. Complications were reported with the help of standardised complication report form. The overall rate of complications was 4.6%. Most common problems were flap necrosis and incorrect positioning of the electrode. No technical failures occurred. The incidence of complications was lower than those reported by other authors.

Abstract:
We have recently undertaken deep insertions of the COMBI 40 cochlear implant electrode (MED_EL; Innsbruck, Austria) into apical regions of the scala tympani using a cochleostomy approach. In order to examine the extent of the insertional trauma, 12 fresh human temporal bones were implanted with original COMBI 40 electrodes. The specimens were histologically processed with the implants in place by employing a sawing and grinding technique. In most cases, only very discrete distortions of the epithelium of the spiral ligament occurred within the middle cochlear turns. Furthermore, a slight displacement of the basilar membrane caused by the electrode was occasionally seen. However, in 2 cases more severe damage such as basilar membrane rupture and electrode displacement was found. Attempts to insert the electrode beyond the point of first resistance resulted in electrode kinking within the basal cochlear turn with subsequent fracture of the osseous spiral lamina. According to our results, deep electrode insertions do not aggravate the insertional trauma provided no force is applied when resistance is felt.

Abstract:
The present multi-centric study involves 19centres, 16 of them in German speaking countries, 1 British, 1 Polish and 1 Hungarian. 60 post-lingually deafened adults with a mean age of 47.5 years (20-70) and mean duration of deafness 5.3 years (0.5-20) have been evaluated with the MED-EL COMBI 40 cochlear implant which implements a high-rate continuous-interleaved-sampling strategy with 8 channels. Safety and effectiveness data have been collected. Speech perception tests include a 16-consonant, an 8-vowel, a sentence and a monosyllabic word test in all languages and a 2-digit figure test in all languages but English. Test intervals are 1, 3, 6 months and 1 year after first fitting. 41 of the 60 post-lingually deafened adult study patients have completed their 6-month evaluation. While their pre-operative monosyllabic word score was 0%, their mean monosyllabic word score 6 months after first fitting was 48% (8-90) with a median of 50%. The mean sentence understanding was 84% (24-100) with a median of 90%. The respective values for the 1-year evaluations with 25 patients are a mean of 50% (5-85), with a median of 60% for the monosyllables and a mean of 89% (30-100), with a median of 97% for the sentences.

Abstract:
This study compares sentence understanding in quiet and noise with 3 different speech-coding strategies for cochlear implants. The results show that the spectral-peak (SPEAK) and continuous-interleaved-sampling (CIS) coding strategies based on spectral signal analysis, allow for better speech understanding in quite as well as noise, than the multipeak (MPEAK) coding strategy, which relies on speech feature extraction. In the intrasubject comparison of the MPEAK and SPEAK strategies, the SPEAK coding strategy provided a considerable improvement in quiet and in noise for the majority of patients using the Nucleus Mini 22 implant. In the intersubject comparisons, the mean results in noise with the CIS strategy were superior to both the MPEAK and SPEAK strategies. The difference was greatest for the most difficult tests in noise. Understanding in noise was last reduced for the CIS strategy. Understanding in quiet was not significantly different between the CIS and the SPEAK strategies, both strategies were significantly better than the MPEAK strategy in quiet. These results are still preliminary, due to the relatively small number of patients and the great inherent intersubject variability of results.

Abstract:
Objective: To evaluate intra-operative electrically elicited stapedius reflex thresholds (ESRTs) measured through three different cochlear implant systems: the Nucleus Mini 22, the Clarion Enhanced Bipolar, and the MED-EL COMBI40. Subjects and method: Relations between intra-operative ESRT and postoperative maximum comfort level (MCL) were examined in seven children (4 Nucleus, 2 Clarion, 1 MED-EL) and one adult (1 Clarion). Results: Preliminary results indicated most ESRTs were either higher or both higher and lower (across the electrode array within a subject) than MCLs. All systems provided satisfactory means for measuring ESRTs. Conclusion: It is recommended that hand-held systems have a direct readout to the programming station and that audio and visual feedback be improved for all units.

Abstract:
The cochlear implant programme in Budapest began in 1985, since when 60 operations have been performed, 14 of them on children (51 primary procedures and 9 re-implantations). Different devices and also different techniques have been used: extracochlear promontory, extracochlear round window and intracochlear implants. Various speech processors were applied, at first digital pulsatile sound-encoding system, later on analogue processors were used, while processors operating on the basis of the CIS strategy are preferred nowadays. The operations were performed on both pre- and postlingual patients. In several cases contralateral hearing improvement was observed 6 months after the operation. Considerable experience has been gained of unique cases, such as a deaf-blind prelingual child and prelingual twins. Evaluating cochlear implant performance, in addition to the usual audiological tests measuring post-operative speech understanding, warble tone sound field thresholds were also established.

Abstract:
Having experience with the COMBI 40 for over two years, it is now possible to look at the development of patient fitting data (thresholds, dynamic ranges etc) at two days, one month, three months, six months and twelve months post first fitting. Subjects are CI users participating in the COMBI 40 European Multicentric Study. Long-term fitting parameters show a favourable development. Stable fitting parameters and the safety features implemented in the COMBI 40 serve as a basis for reliable long-term speech understanding.

Abstract:
A 12-channel cochlear implant (CI) for high-rate pulsatile stimulation strategies is presented. Symmetric biphasic current pulses can be generated up to a maximum pulse repetition rate of 18.18 pulses/second. The stimulation pulse amplitude can be selected within 1.5 microA-1.5mA. Data and power are transcutaneously transferred using a single radio frequency (RF) channel. A fully digital data transfer format is employed at an overall data rate of 600kBit/second. The implant contains a single mixed analogue/digital CMOS-ASIC (Application Specific Integrated Description) for data synchronisation and stimulus generation. Stimulation signals are applied via a monopolar intracochlear multi-channel electrode. Output capacitors for each channel are employed for safety reasons. A self-calibrating back telemetry system is included for estimating the channel impedance and field distribution along the electrode array. Dimensions of the ceramic package of the implant are only 33.50 x 23.40 x 3.96 mm³.

Abstract:
The time course of speech development in children after cochlear implantation may extend over many years, thus making long-term studies necessary to evaluate any outcome. We report our long-term results after cochlear implantation in children and adolescents. Mean follow-up was 28 months, ranging from 1–5 years. After at least 1 year of experience all children were found to benefit from their cochlear implants. The majority of children scored above chance in speech identification tasks requiring closed set word and sentence understanding. At the 4-year interval, all children tested including prelingually deaf children had developed open-set sentence understanding. The most relevant factor accounting for differences was the duration of implant use in all groups. Even beyond 3 years the results continued to improve. Peri- or postlingually deafened children tended to have favourable results. For prelingually deaf children, duration of deafness and age at implantation were correlated negatively with the results.

Abstract:
This study compares sentence understanding in quiet and in noise with 3 different speech-coding strategies for cochlear implants. The results show that the spectral-peak (SPEAK) and continuous-interleaved-sampling (CIS) coding strategies, based on spectral signal analysis, allow for better speech understanding in quiet as well as in noise, than the multi-peak (MPEAK) coding strategy, which relies on speech feature extraction. In the intra-subject comparison of the MPEAK and SPEAK strategies, the SPEAK coding strategy provided a considerable improvement in quiet and noise for the majority of patients using the Nucleus 22 Mini-implant. In the inter-subject comparisons, the mean results in noise with the CIS strategy were superior to both the MPEAK and SPEAK strategies. The difference was greatest for the most difficult tasks in noise. Understanding in noise was least reduced for the CIS strategy. Understanding in quite was significantly different between the CIS and SPEAK strategies; both strategies were significantly better than the MPEAK strategy in quiet. These results are still preliminary, due to the relatively small number of patients and the great inherent inter-subject variability of results.

Abstract:
The authors give an account of their experiences with cochlear implants on the basis of 10 years work. Pre-operative evaluation, operating methods and post-operative rehabilitation are presented. During a decade 56 operations were performed, 11 of them on children. Results with prelingually deaf children are demonstrated together with the phenomenon of hearing improvement observed on the contralateral side of the operation.

Abstract:
Coding strategies for cochlear implants are discussed with respect to their ability to code spectral and temporal features. The implementation of the CIS-strategy, which to a considerable extent encodes the spectral as well as the temporal domain, in the COMBI40 fast stimulator cochlear implant system is described. The speech understanding provided by this system is characterised by a median of 60% for sound-only monosyllabic word understanding 6 to 12 months after implantation achieved by 27 postlingually deafened adults who had received the COMBI40 within the frame of a multicentric clinical study. With the broadband analogue strategy, which is implemented in the COMFORT system featuring an ear level speech processor, results from prospective clinical studies are not available. The most successful German-speaking patients have reached up to 52% of single syllable word understanding. Good values of 30-52%, however, in most cases developed slowly over many months or several years of implant use.

Abstract:

Abstract:

The most important aim of a cochlear implant usually is to achieve speech understanding. Music-perception is also an aspect of hearing that can be considered as a contribution to the total benefit a patient gains from his implant. In order to find out, to what extent an implant user is able to perceive musical features; a test battery has been developed. The battery comprises 15 test items that are arranged in three categories: category 1 deals with the subjective impressions elicited by different musical instruments and different rhythm patterns, when presented to an implant user. Category 2 tests the ability to discriminate between ascending, descending and even-pitched sequences played on a piano. Category 3 checks the ability to recognise different rhythms, pitched tunes and instruments, each from a closed set. The music material has been presented under free-field conditions, either played live or from a tape-recorder. In order to find out how normal-hearing persons score, the test has also been performed with a group of normal hearing persons. The first results from implant users show a tendency that temporal features, like the ones discriminating different rhythms, can be perceived better than features related to pitch, like expressed discrimination and recognition of tunes or different musical instruments. As the number of test individuals is rather small at the time, these results have to be considered preliminary.

Abstract:

Development for cochlear implants of primarily analogue design focuses in two directions. The first direction is miniaturisation. A behind-the-ear (BTE) speech processor has been developed which can replace the body worn processor for approximately 90% of the users of a MED-EL cochlear implant and works with two 1.4V hearing aid batteries for between seven and twelve days. Consonant, vowel and sentence testing and patient questioning revealed that the BTE speech processor demonstrates a significant improvement in speech understanding compared to the body-worn processor, and that the patient's device acceptance is superior for the BTE processor. The result for the second direction for our cochlear implant development is the multichannel cochlear implant, CAP, with combined analogue and pulsatile stimulation. It aims at complementing the information from the broadband analogue signal by adding spectral information, that is, tonotopic information. This device is capable of simultaneously stimulating one electrode with a broadband analogue signal and one of eight electrode channels with a pulsatile signal. The system van also be used for purely analogue or for purely pulsatile stimulation. Preliminary results with the first recipient of a CAP cochlear implant system demonstrate that the device works as expected.

Abstract:

High levels of speech recognition have been achieved with a new sound processing strategy for multi-electrode cochlear implants. A cochlear implant system consist of one or more implanted electrodes for direct electrical activation of the auditory nerve, an external speech processor that transforms a microphone input into stimuli for each electrode, and a transcutaneous (rf-link) or percutaneous (direct) connection between the processor and electrodes. We report here the comparison of the new strategy and a standard clinical processor. The standard compressed analogue (CA) processor presented analogue waveforms simultaneously to all electrodes, whereas the new continuous interleaved sampling (CIS) strategy presented brief pulses to each electrode in a non-overlapping sequence. Seven experienced implant users, selected for their excellent performance with the CA processor, participated as subjects. The new strategy produced large improvements in the scores of speech reception tests for all subjects. These results have important implications for the treatment of deafness and for minimal representations of speech at the auditory periphery.

Abstract:
Comparisons of analogue and pulsatile coding strategies for multichannel cochlear prostheses are reviewed. The results are related to design considerations for paediatric implants, including efficacy, safety, ease of fitting and access to future improvements.